找回密码
 注册
关于网站域名变更的通知
查看: 2902|回复: 2
打印 上一主题 下一主题

[仿真讨论] 好久没发帖,SIlist话题之PCB的损耗可否预测?

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2012-11-26 22:11 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
故事是这样开始的:有人问树脂含量和损耗的关系。% ~- R- x$ w. |' s
* Y, }( b3 d7 t1 T* n* \
Date: Tue, 30 Oct 2012 08:52:23 +0800 (CST) " W% l, ?5 u/ g6 K

# l( G8 Q- J9 x# O8 u0 C1 }Hello experts,6 R" ?, l3 B1 `/ v: L  x
>% _- j1 c% U8 u0 F  b! Q
> I'm from PCB house.  Recently we have producted some insertion loss test , ^( y$ `3 F4 f1 x# j
> boards(16L, SET2DIL coupon, IS415/IT150DA/I-Speed Mid/low loss material with
7 V* B6 b( t/ K; Y1 ]! @8 |6 L> RTF copper foil). We found that the multiply core and high resin PP will " {# ^" L7 R$ f, p; g; J- N
> result a lower loss result. It's a trouble to MI engineer.  I would like to
* k9 q( j; a& V: b> know how to predict the loss base on stackup. Please help to suggest (papers,
4 Y4 D8 p- @& q' @6 x1 n3 d> script, free software etc ). Thanks a lot!" I" l/ x1 ~( ^6 E3 @
>* N  s7 U9 m( n+ ], Q- w; Z# p) r
>
  K4 J7 z/ r/ ~4 K, \* j>! d0 ?2 n. }. Q
> Best regards,
) r: g! W$ W7 C# |3 [1 O' ^; @- ]8 j>
- @4 ]/ k* l* B, }> Terry Ho/ r6 z1 [7 ^( q. T% Y4 c. |

1 d  y0 D- V' z  m然后 Scott McMorrow ,steve weir,Loyer Jeff 这些活跃分子开始依次发表意见.
6 f# {% W5 d2 Z) R) h* g  R, Y
0 t$ z. }5 x7 B2 d' |8 PFrom: Scott McMorrow <scott@xxxxxxxxxxxxx>
4 x" J5 _& ?$ s" i/ d( H) NDate: Mon, 29 Oct 2012 21:02:36 -0400, b3 S1 y4 V' g7 P0 X

7 Z! X1 l3 E5 Z( J7 [Hmmm...  I'm in the middle of the middle of Hurricane Sandy.  Power is out.: p7 O: q5 }' B& C8 v/ D& J! X- Z" k
Storm surge is causing the river across the street to rise to unprecedented" v& G0 k5 s6 ]4 P8 f; ]
levels.7 s- U; x; v& c9 G& A& _, t
... and this guy wants us to do his job and suggest free software.
6 H, s7 z6 @7 H9 K/ g
' _( H( ~  `9 P7 g* e, `/ |7 i8 S1 i" {% e( ^
From: steve weir <weirsi@xxxxxxxxxx>% M" Q2 N9 H0 i+ Y: B8 d
Date: Mon, 29 Oct 2012 21:23:22 -0700
# P  g5 O( U( l  _& \: d, Z8 }) P( l. r9 \/ k5 J9 r
As a PCB fabricator I think you need to develop in-house material ( i, X6 N) I  a  h+ \2 R7 K. Q
properties expertise.  Your competitors who understand the materials
" T/ o2 U  V" p) @5 Dthey use and their process limits are positioned to get higher yield 6 L' n5 H8 Y8 f0 f: i
percentages at lower cost because of their knowledge.5 s/ R9 _! H: ~
& J9 T4 S. d3 |$ l
I appreciate that you don't want to spend unnecessary money, but at 8 m( r+ j. e2 l
least spend the time to learn about what you are using.  I am troubled
$ {; H( @$ Z+ L. e8 ^& Gthat your engineer knows so little about the materials you use that he 8 A. n1 t: [6 c4 V4 `
is surprised by common results.  Once your company understands materials 5 K1 S' Y; c' o1 J$ `! m/ p
better you may well appreciate the value of commercial stack-up planning
; i" T  j* L% l/ tsoftware.
$ d3 F! p0 l4 @- z' X7 |% m- w- t- N9 e! G( w
Steve.
9 P1 l# ~+ V! W% ]- h! X) q5 o$ z. x7 w7 ]' h/ E( W4 }
From: "Loyer, Jeff" <jeff.loyer@xxxxxxxxx>
8 o* y5 ~8 |; _4 v9 }) M! U; c; uDate: Wed, 31 Oct 2012 21:33:48 +0000
2 ^/ H! ^$ F7 a; c0 ?( J
9 o* r- A. z% E% T4 F
% H- v# d1 u+ W7 pI'm surprised at the tone of the responses to this posting (but perhaps I ) W( Z, u, k) o/ U1 ?
shouldn't be, unfortunately); I don't see anything untoward in it.  I would ! R0 u4 F8 L+ Q4 x$ ~6 P
like to provide some context (with some assumptions on my part) for the message " N5 g, w, W" {! n
lest other innocent postings meet with similar fates.  I'll also (eventually)
7 j$ ]+ I7 [5 L( h, D" mprovide my answer to the question, as I understand it.
' ~6 r- r3 c% r" t  ~9 b5 }8 T' x* j/ u, W
  a. N4 D, ]+ s+ |0 k! q6 N0 P$ l
There is a significant portion (majority?) of the industry which is extremely + W6 r! \% G$ k" T' w
cost constrained.  For instance, to them rotating a design 10 degrees is : Q6 }/ b6 N; a. K, |6 S# }% R, u
impractical, much less 22 or 45 degrees.  Thus, they find other cost-effective 4 C+ p0 X& [% a
yet effective means of solving problems (such as zig-zag routing), even though 8 U4 P8 @. J, ?3 e' }
those don't appear efficient to others to whom cost is not an issue.
$ L. \8 N' E2 k2 C# S* O6 Q9 K: A1 U' @6 P

! a4 q& ~+ G( R( b! F. J' O* y6 Y
& }: o: @! l0 t. L& o# IThere are new pressures being applied to this segment - designers are now not 0 \/ L+ ^6 Z" N# x
only requiring impedance control, but are also insisting on insertion loss   t: L: E- T& g3 {2 k4 @5 s* V, B
control.  This is a HUGE paradigm shift, very similar to what we encountered 2 m* Y% v5 k7 k4 r% L' D- @7 J
when traceable impedance control was first introduced.  That was a very
$ o2 `. h' \4 P5 h% e3 ~7 ychallenging evolution, and this will be also.
) @( J( i& O  A: a- |+ w4 m
# N  I  K. ?  Z: l$ V7 F# g1 c3 q3 S5 C

! u+ H3 G% o1 I; B( s1 G" VAs an example, PCB vendors are now being advised to smooth their copper, after % r: v) V9 Q2 h. @
years of purposely roughening it for best mechanical integrity.  It should come " l  D4 |5 f0 I+ f' l7 ^
as no surprise that this is not a trivial change, considering the effort that
" l  D0 `4 I8 e1 ~has gone into ensuring mechanically robust designs.
" }* D" o4 q4 x' b2 ~( G+ c  ]
7 a  x# q) H" o# ~& H8 N  K/ _/ B) ^' _+ J( ?6 o5 Q# p% ~
: ^" T& g/ h1 A' P9 x
Likewise, many other basic assumptions that we've been able to apply for years
5 H+ I: M1 l; o1 r1 r  I$ d1 _- E" Nare now being drawn into question, and PCB vendors are looking for help to
2 m( `. c& a$ f7 G/ M) mintelligently and cost-effectively explore options - "How much effect does 5 C4 l' M# I/ R' s# C$ _
rougher copper have on insertion loss?".   I believe Terry is highlighting the . x8 R. i9 j/ g, x; B
fact that, while there are many tools available for impedance prediction,
4 h3 q7 O1 R( X! Yinsertion loss modeling is much less accessible.   I don't think it is ' p3 H1 P7 }, x+ I3 l5 ?
inappropriate to ask if there are cost-effective, reliable tools available to ! t, l9 @5 p! a* [
predict insertion loss based on a proposed stackup.. _. _* T& b2 k- d* [4 T
" S( i$ }; G8 j: L6 @8 T

8 u, d" H5 d4 I: F6 w3 j. i
+ r' q- Y3 ~  `" Q8 N7 P8 R2 ?) SUnfortunately, I believe the answer to the question is that there are no
9 Q4 {9 G4 m  B% h+ h) v. preliable, cheap (~free) modelers available to predict insertion loss.  And, the 3 }$ T; j& W, I- M0 |- F1 K
ones that are available require a great deal more knowledge about the stackup & n% O1 I- \0 Q3 T; L+ v8 D8 v
than impedance modeling does, and that information is not easily obtained.  
" o9 Q! \4 ]+ U# @5 g* M4 HThere are some of us working with a vendor to test their modeler against a
5 |% Q" Y/ n# W6 T5 s- ?variety of stackups and we'll present results at DesignCon.  My personal goal % A1 A$ c2 O5 ?0 h9 ^2 {" D
is not so much to test a specific modeler but to judge how effective a modeler
; m+ ]! b+ @0 a! ], ^2 Ycan be given information that can reasonably be gleaned prior to building with
6 V+ b) Z/ x1 z4 G8 e" [% i! avarious materials, copper types, etc.5 N/ ]1 v( _( g8 [( Z4 F6 m6 j
- u4 s6 h: D" b' W& U6 Y, [" V+ M* m
  f2 b- J0 _! ?) Z* I8 ]9 h! h' r* P

+ ?& z- v7 V; @$ j. z' bIn the absence of a modeling tool, or in addition to one, I believe empirical . J0 x7 q) ^' z2 U& k6 S
data is the best predictor of insertion loss.  To do this, however, you have to
' ~( t; G8 D/ g" D) C; P* bbuild a stackup representing the final design, and it's not clear at this point 5 \/ Q1 K0 G% d4 W" H$ |4 j
how broadly you can extrapolate those results to other stackups.  But, I know
  N4 {/ V: l) E/ \! y) D3 @many material vendors and PCB shops are engaged in similar efforts.+ N0 ~4 I6 R6 K; ], u5 k8 `7 S0 |8 m

$ ?' S. O# C2 K; B& a0 N* ~
3 |  v: `* P2 b. c
2 h- Y+ o' s8 `, L" X) J" A# l  fI think this is very similar to what we went through with impedance control -
* Z1 A- F$ p3 q' a9 C: \. B. Kthe shops which most quickly were able to predict and control that
+ T' @8 i& `7 H' f+ U1 Kcharacteristic had an advantage.  I think successful PCB vendors will need
: p8 `$ K/ r, kreliable modeling software and empirical data on insertion loss for their 0 [8 ?, F% A/ `9 |
particular choices of materials, etc. - they will be able to find the most cost , p& ~1 f- d. t2 u
effective solution.
! Q, [3 ]5 X% S4 e% R7 ^- q6 M- w3 Z- A; s# D
' L  U' P. B/ c

7 a" g" B7 R9 T. T# OBottom line: I doubt a reliable modeling tool is going to be cheap, but is
& U& @# I4 d" X: G/ P5 a  mgoing to be necessary, and you'll want to compare any tool you do purchase
+ _2 K) R0 Z, wagainst empirical data before you trust it.
( D6 {5 Y. O" R$ @* ~+ C0 k- G
: E- ]( @4 a" [# W% u: c8 G  B. g0 e' e
, Y9 \" p9 V9 V9 p4 `* ]
I hope this helps,, I( X: Q% n* ?, c6 d" f# W

8 Q' ]% `* N9 ^2 q8 H5 U) I) `: n. IJeff Loyer
2 }8 Q6 D5 D* ]3 L
% A, t: \( z% {' I- F
( e1 ~3 L/ U2 L% o# C. W6 kFrom: steve weir <weirsi@xxxxxxxxxx>" ?: n7 ]$ B3 [0 |5 G" u; O
Date: Wed, 31 Oct 2012 20:14:41 -0700
% ~9 Q! i- T9 K9 [4 Y
8 Z: n1 \) z4 F8 u5 O- g1 X 8 u3 {& _, W; B' \5 q1 }. [
Jeff, given that the only two responses were Scott and mine, I am 1 p. a% |2 o) A3 @" Z# L% |( F
surprised that you are disappointed with both.! y; {% h; e* }9 x5 ^
: Z7 @; v0 N0 Y0 J7 n
In a fabrication market filled with intense competition it is up to / v4 X8 L# C1 E" Y* X
individual players to keep up with the technology requirements of the ( h9 X) ^4 n: w! J/ J
market or get left behind.  The task is not simple. Depending on how far : ~+ ^# ]$ Q$ T3 E: G5 T  _
up the frequency range one needs to go, dialing in cost effective $ x! R; A* f9 W) l
process requires substantial skills, time, effort and serious money.  It
& `+ T$ q( b. ^, jrepresents competitive advantage to OEMs and their partner pcb fab : Z4 N/ w, X8 O- d  `
houses alike.  Neither who have invested are likely to hand over that
$ A4 f( @# r2 d$ y* R5 i6 l$ M$ v2 lkind of advantage especially when it is so costly to obtain.
" Y, l. [* n, h" \- t1 i
1 k& S3 E* a6 ]7 }I don't mind that Terry is looking for a solution on the cheap or free.  ; B  P/ K8 }1 j5 u( X! K& x; u
If one could obtain such a sweet deal, one would be foolish not to take 2 M( d2 A' A1 r& a( \7 E8 e/ b0 ~
it.   I am troubled that in this day in age, his organization hopes to
5 y- N; k7 o, Gaddress a sophisticated issue before his technical staff has a grip on
* b/ B% L* b) V' q) E# rthe basics.   I fail to understand what you find inappropriate about ( X' a' {9 p6 S1 z
that concern.  I would rather yell at someone headed for a cliff to stop
4 y! H! v8 @" j& d6 i: wthan smile and wave., [* A# z, |1 v, a/ C5 k& r! \) o8 V

$ t, W, P! h- ]+ c$ }6 ^Best Regards,
7 O' v4 ~3 ~) J% g4 \0 c* G' H4 Y
, v7 a4 m/ ~# e5 i. I7 k7 r8 n2 k9 W. K
Steve.
3 }/ x& l3 R* m: j) _
. ?- X, P7 g- P# Q8 ZFrom: "Loyer, Jeff" <jeff.loyer@xxxxxxxxx>
3 {+ N& k% C0 E! q0 ]Date: Fri, 2 Nov 2012 15:37:46 +0000
' m# }; j( Y) J: \5 F# Z9 x- j
) b1 F  I. }9 M4 Y
/ \+ F7 k+ R* \( Z6 PI realized we hadn't answered the basic question - "why does a high resin
# @. R3 e4 {& \) h1 {prepreg give lower loss?"  The prediction of loss vs. resin content isn't
$ K2 g8 `  L, P8 M, U# Utrivial; as Steve said, a tool which allows you to model loss for the various
/ U5 G! Z1 \( J3 C+ ^4 uscenarios should be on your Christmas wish list.  Here are the factors that I
& N) m# o& @: _4 y* I; W6 T* g3 `. `know of (thanks to Richard Kunze for clarifying things for me, and I welcome
6 j( t0 h  D/ s. `5 Cothers' data/opinions):
, B  i) O( D) L" g* Resin has a lower Er than glass4 H0 v3 T. z5 [5 n# n; M4 n$ r

6 p2 g, d7 X) B  b' D) _1 R# P     * loss is approximately proportional to Df * sqrt(Er), so lowering Er
6 N+ ]6 B" _" \( G9 h: |* ilowers loss: _# l- \" w+ m& H+ q. M
6 S& @! O8 D5 o% R8 J, q# U
     * lower Er allows wider traces for the same impedance - this may decrease
. W. _7 ]- Q8 V: N! w/ M* uloss also: K- K6 l, E, |1 ~. Q# l

& Z5 A" D8 ~. q. ~" m* But, resin is more lossy than glass, so Df may increase0 G8 V# O4 f9 w2 K! C
5 S+ p* J0 n, s
     * for standard FR4 constructions, this is especially true.  The data sheet 1 J- S+ D  s+ C
for IS370HR, for instance, shows Df varying from 0.0177 to 0.0247 (1GHz), 4 X6 E9 I9 _- U+ k; R+ b
depending on the resin content) N7 f3 L5 A" f+ ]% c

8 A" o$ M+ s0 ^# S* D0 A     * for low loss materials, this doesn't hold.  The data sheet for Meg6
$ y7 o7 Y" i3 A" Sshows Df constant (0.002 @ 1GHz) for all its flavors of prepreg
4 i1 [- D) c  K. a: P
" ~$ \. f( N3 _- W1 ]# w* Y, |* Where the factors dominate will depend on your relative conductor vs.
% k: z0 ^+ U" l3 @/ odielectric loss effects: for FR4, dielectric loss dominates at >~1GHz; for
! t8 p  d  @) _& V: v  E9 Olow-loss materials, conductor loss dominates up to much higher frequencies (as
1 B+ U8 J! h: G, j& gmuch as 10GHz).
( }4 y" J) n* E) F+ h! W5 h+ ]% i9 w" `0 S# F# D& K: `& S
. j1 e- a$ c7 ~
+ A2 z. ?1 i' l% o6 z3 k
In your particular (low loss) case, the lower Er of the resin-rich case is
1 b5 u7 l& ?' M" atrumping the Df change (or lack of) so you get lower loss.
3 c; z6 n! U# h( q' ^" B
0 ^' T. C9 B, J2 z
7 A( ^& h+ i( W! ]0 I# L5 N% @8 i0 [  }% i4 e! C+ G
Only a tool which takes into account the properties of the specific material
+ U0 s& r- n. v" S( ?' N* I7 w8 K1 r# cunder consideration can be expected to give an accurate prediction of insertion
6 {9 G1 o+ P: aloss for various resin contents.
4 T" E. S+ F5 |9 H4 _2 w+ b5 `  c3 T8 U

9 B% ^% {$ Z; ?; L, B- k# F3 g6 P# G+ f0 G9 o( ^2 {
There are also environmental effects (I haven't heard or seen these stressed at 7 W+ V% g  t: A; S4 k) L5 ]0 ?
this point, though that may change soon):4 f6 f7 K' G" p; a, m" V; \6 R) v
) n+ B$ I2 g6 q7 g: e" P
* Higher resin content will absorb more moisture, and thus your loss will be
$ y: P3 i, Y, q# I/ D2 I3 Z& Amore susceptible to humidity effects0 S9 `" z- U& A

3 W8 G, w8 ^! g0 }* There's a difference in how the various materials' Df changes w/ temperature
$ k: K2 }+ s! ]- more at DesignCon
  J, ?# Q! q! i# D) E8 l0 |
$ O  Z4 O* U: ~( ?, {: G9 Z* }
8 V3 n1 v3 ~7 @/ n2 s, k; q9 [: E: D5 h; f5 l0 W$ ]' i
I hope this helps,1 T9 `# [% q9 y' {1 f

- M6 ~7 O% H/ @1 X( W, e& C" jJeff Loyer
# P1 [" X. ~5 a
( Y; J3 m" y/ A7 V5 VFrom: Scott McMorrow <scott@xxxxxxxxxxxxx>7 ?' b# D( N9 d& f& N6 R7 O
Date: Thu, 8 Nov 2012 09:12:46 -0500- y% o: G6 K4 c) H/ R/ z  m8 a( {
& f9 R$ y0 ?& `( a

8 }6 v7 _$ {9 Y7 ]7 h; h" }, vJeff
' O6 ?0 T, O/ k" ~5 c# ?( l  NA few quick comments.  Although the tanD of Meg 6 is stated to be flat, it
- u2 |4 h( J5 z1 Dis not if you measure it.  The manufacturer reported characterization in
2 ^) X6 @5 B8 i/ H: U  k/ n0 Mthe data sheet is not correct.  Causality is violated when tanD is flat.
( a% r2 x$ ?6 i& O# K+ d, B8 A: H; m$ y
Loss is generally due to molecular dipole losses in the material.  It can
. Z# o& \* k: w; ^/ G, g1 `be low for high Er, as is the case with ceramic.
; ?5 n: O0 J2 x4 s& J" y
( L2 p9 C( v, f! ]- gHygroscopic loss is due to molecular polarity. Polar molecules "glom" on to
. r, o7 k. {1 F) y5 ^3 \water molecules, which are also polar. Same property makes the material
1 A/ B, I& d# H8 N- j. \extremely "sticky."  B: d) n& m# D& _. E7 L% X

$ V2 X& d! K/ L( k3 uThe paper that Jason Miller of Oracle and I wrote for DesignCon last year
" N& K( b% z  n  Ccovers some of the impact of temperature and humidity on measured losses.
5 Y/ T8 S$ K$ @7 K# M3 R# t I don't have access to my storage server right now, otherwise I'd give a
. a" ]! y) V3 N2 j7 bpaper citation.
( C! }) Y; q7 \
- J8 a" l6 b" zregards,, S, c, K* F3 w! s9 v$ ^

, n5 q) T  k7 RScott* r2 F# B6 v8 I/ g- ?" c

' M8 G0 B3 l) gFrom: Kirby Goulet <kgoulet@xxxxxxxx>; W2 T& F. f1 O
Date: Fri, 9 Nov 2012 11:08:49 -0800 (PST)5 b$ J+ V0 \1 v/ e
, g' b# X7 v. Y' L$ V; `' e

2 y: m+ h/ k9 ]5 o" y1 E, Z* x! @+ S/ gIt's not production quality software but you could try the mdtlc calculator to
0 a3 S, E: y1 M5 Q- Jexperiment.  I tried Jeff's example and it seems to point to an explanation. ( U. C& R+ l) E& E
The source code is available so you might extend it to do what you want if you 3 Z1 Y; N% W$ k+ G
have more time than money.) l% j5 `% Z+ H
It looks like a race between loss due to increasing loss due to resin and
& `; ?. T1 ~5 ]$ s4 a" L; @) j9 Ydecreasing loss due to wider traces.  There is a bigger increase in the resin " E8 R! {. a  ]2 {3 M) m9 C
content for the IS370 case over the IS415 case.  Not only that, but the IS370
% x5 {# s* w2 v! l* N+ v' w# Presin is lossier: 0.0169 versus 0.02984 so the winner is increasing loss.  ) f+ N9 @/ b) h# M6 o

- E2 Q3 y( g: k8 v7 A5 LFrom the field solver, , m7 }. m2 v  \' ^- ~
9 l1 d  u, g' `* [
IS370: the effective dielectric loss went up 14.7%.  The perimeter of the
0 v, v/ J* y( A6 W. u  ?. d0 ^1 D+ W/ econductor went up 3.6%.  1 @; W. o# Z; z0 W  N# v
IS415: the effective dielectric loss went up 6.7%. The perimeter of the
4 |; k3 i# S+ lconductor went up 5.7%.5 t% U+ Y( j% N1 P- }' X
+ O7 Z8 a7 g! G+ ~* E! @# e
In the second case, overall dielectric loss is a smaller fraction than the
4 |+ F4 k% r. M3 K% `first case.  The missing bit of information you need to add is the conductor
+ H/ }' K: d# c! j5 A) Yloss.
) |& J; w0 D9 W* q, l* k! r
( n; s$ v* Q2 o8 W4 }7 F, m9 y! sINPUT PARAMETERS:3 [: i! I* z+ i/ L3 [
! O" z1 `$ R, Z6 C$ v, ^/ {
      Layer             Thick   Specifications
3 q% Y" ?. U3 F: A4 c4 y      Copper Plane Top   1.30    Opening w=0.0  offset=0.0% F' Z# @* z5 E1 t1 `' r
      Laminate Layer 1   3.90    Resin Content  57.0% 3.4-4.9
8 U: M/ ?: ~; a2 y, V0 A        Signal Layer 1   1.20  4.3-7.2-4.3  Etchback=0.00
8 m5 d7 Y$ m, c  L1 E1 }! o      Laminate Layer 2   3.90    Resin Content  57.0% 3.4-4.9
1 u5 [* l% f# W5 _   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0
4 s% x/ L( }1 V# b& h3 s % s' K. Z" u/ v
      Layer             Thick   Er    Loss Tangent
0 A3 O( Q8 C. ]/ Y% b' @/ M      Copper Plane Top   1.30  3.20   $ P' {; D9 j; T3 T( g
      Laminate Layer 1   3.90  4.02    0.02100
8 u4 ], y& q8 m        Signal Layer 1   1.20  3.38    0.02984  f4 D0 Z$ N+ ^- t- v
      Laminate Layer 2   3.90  4.02    0.02100
! c6 ?; F) g3 k$ M5 j$ r% s   Copper Plane Bottom   1.30  3.20
$ r/ v% X: H3 X ' y: s5 L9 \3 j" j' i; z
DC resistance by dimensions:
: ?1 f" \! d1 L. ~ Rdc_trace_1= 131.53      Rdc_trace_2 = 131.53  milliohms/in 20C. U# j7 N* ^/ C4 c1 ?2 [' }

4 W" m- w. T% ]* H DC resistance by pixel count:
+ y2 c8 L1 I' @6 r# ^( k. I1 [# F Rdc_trace_1= 131.531     Rdc_trace_2 = 131.531 milliohm/in
; F( h( J% j6 |  f- R C_odd      =   4.221 pF/in    C_even =   3.968 pF/in* r2 |) J/ `; C8 }( Z, D. L
Er_odd     =   3.923         Er_even =   3.947- y/ L" a" i! V
Loss_tan_o = 0.02212     Loss_tan_e  = 0.02184  ' p9 ~5 `. G# [8 L/ n
Delay_odd  = 167.801      Delay_even = 168.314  ps/in.
# y/ c" |3 H4 a5 F$ E Z_diff     =  79.501  ohms   Z_comm  =  21.209  ohms% y6 h- T7 k4 w1 I0 V

. e3 ^! g; P: I9 z" dSimulation pix map 122 pixels high by 800 pixels wide.) O% S- \4 y0 d' M) b  O* w
293824 bytes allocated for bmp.5 K9 u' d4 ]6 G/ o* l: O
( [( X. N! z: h1 h
INPUT PARAMETERS:
5 M1 e7 y6 g, K/ U- Z+ L
! g% P3 H/ l7 V4 h, m5 i5 N9 F      Layer             Thick   Specifications 9 j% a5 S* [; D- w5 Q0 U
      Copper Plane Top   1.30    Opening w=0.0  offset=0.0) }6 |7 ^6 h, T' D* `5 t/ h
      Laminate Layer 1   4.20    Resin Content  75.0% 3.4-4.9
  ?7 D. D% d- Z* B/ U- E3 P! d# l        Signal Layer 1   1.20  4.5-7.0-4.5  Etchback=0.00, K7 {, h! F9 A; j, `& _
      Laminate Layer 2   4.20    Resin Content  75.0% 3.4-4.9
4 ?8 y) h. z3 h; {   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0
9 d' @2 R; h6 |+ Q7 k* }  |3 {
1 a8 L  r. H: x) Y, _      Layer             Thick   Er    Loss Tangent
& g( @5 J( q  i7 V. a6 o      Copper Plane Top   1.30  3.20   
4 b$ T, f5 H' q: z- `0 P      Laminate Layer 1   4.20  3.75    0.02470 ' @1 G' u  K0 c- O% n# h! Q! ^2 ]
        Signal Layer 1   1.20  3.38    0.02984
- {2 L( a5 \( R      Laminate Layer 2   4.20  3.75    0.02470! i. x6 k" d) K1 f3 k
   Copper Plane Bottom   1.30  3.20* A0 n, g  A! }3 a; I

9 d& a' o  E2 b' u# ? DC resistance by dimensions:
7 m1 ]8 r+ F3 x( m Rdc_trace_1= 125.69      Rdc_trace_2 = 125.69  milliohms/in 20C
5 i1 x8 L5 K- u4 E$ w; Q 1 p) b( ]5 h) K
DC resistance by pixel count:
/ X$ Z1 v9 \8 S) l8 g, {5 } Rdc_trace_1= 125.685     Rdc_trace_2 = 125.685 milliohm/in
6 S9 `( T4 R7 l. h C_odd      =   3.929 pF/in    C_even =   3.624 pF/in( C9 ^1 f1 L% w
Er_odd     =   3.694         Er_even =   3.710
' D: r6 K  X8 q* { Loss_tan_o = 0.02537     Loss_tan_e  = 0.02518  # \$ e# B! H& ]
Delay_odd  = 162.844      Delay_even = 163.195  ps/in.
" O7 x% e( W/ S& k Z_diff     =  82.900  ohms   Z_comm  =  22.519  ohms
+ v3 v$ {* \1 Q. N 2 A# D6 v+ Y6 l# j
Log file save name:
2 g- p. q8 D( k0 O* Emdtlc_12100946383.txt
6 x# h* G7 I( ^. s/ w. n1 T' q( b3 u9 a% N0 m; t
Simulation pix map 118 pixels high by 780 pixels wide.
  K3 Y) E' q# U1 A277144 bytes allocated for bmp., B8 V6 I  x2 i$ L
6 d; V7 f  a) S% e& ^/ S
INPUT PARAMETERS:
3 w" s6 \0 @8 ~ + N' W/ p8 _# M( c8 Q
      Layer             Thick   Specifications 2 A, |# H; Y' _$ _, `/ ?
      Copper Plane Top   1.30    Opening w=0.0  offset=0.0* V5 e) G" {5 N; u# G+ h
      Laminate Layer 1   4.00    Resin Content  45.0% 2.6-5.1 ) ]3 o  ?( O2 v6 Y7 d1 j2 {
        Signal Layer 1   1.20  4.1-7.4-4.1  Etchback=0.00. ?* Y) `0 d/ [$ M$ j
      Laminate Layer 2   4.00    Resin Content  45.0% 2.6-5.1 ) h! N/ V+ W' v- L+ D" Z/ a
   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0
. V# s* ~0 Z" X! q# N8 j6 i
1 f, R2 f6 p5 g      Layer             Thick   Er    Loss Tangent
4 X+ h) [+ W" n. e$ R( u8 `( R      Copper Plane Top   1.30  3.20   # v- Q5 B! D. P* }% V
      Laminate Layer 1   4.00  3.98    0.01140
- n5 O& v9 e% W. s5 f' O! r        Signal Layer 1   1.20  2.64    0.01690+ \# O! x: @7 W. ^; ^5 \* {9 V
      Laminate Layer 2   4.00  3.98    0.01140
* p4 |9 ]% U0 u; i: |   Copper Plane Bottom   1.30  3.205 @! U& y# c8 f3 l
& m5 B! K) z" q+ k& w0 u3 ]8 \
DC resistance by dimensions:
& |9 R' A$ p$ k$ T  E: S6 R Rdc_trace_1= 137.95      Rdc_trace_2 = 137.95  milliohms/in 20C
- W# D7 z. b  B, g$ g  j$ `: F5 R  [ 3 f7 z1 e# @% ~6 w5 A7 {! l
DC resistance by pixel count:
' {3 y$ D  }2 e2 h! M9 _& q: G, P Rdc_trace_1= 137.947     Rdc_trace_2 = 137.947 milliohm/in
" ]9 m& f; L. R C_odd      =   3.910 pF/in    C_even =   3.695 pF/in; N0 M0 |% H3 }: Y  ~
Er_odd     =   3.769         Er_even =   3.817
! L" u5 u$ T5 A* A# `* s, c2 F# { Loss_tan_o = 0.01202     Loss_tan_e  = 0.01189  
. ]2 E; N3 s( w. |% i Delay_odd  = 164.490      Delay_even = 165.524  ps/in.
+ X* H3 \' u5 M# N* {/ [ Z_diff     =  84.134  ohms   Z_comm  =  22.396  ohms& n. _6 K; [% a1 V0 r

( o7 Z5 Y% U. D4 {1 r& M# W6 ESimulation pix map 118 pixels high by 795 pixels wide.8 t9 ]! J8 _6 `5 Y( E% |. g
282454 bytes allocated for bmp.+ C8 j% a. L/ O$ [

! w9 u9 E' P" M7 J5 |1 sINPUT PARAMETERS:
# m0 K2 a3 G" o$ j$ l
0 |) H4 D  j  \: e9 m      Layer             Thick   Specifications
/ |% L+ k6 ]* U* V9 u( N      Copper Plane Top   1.30    Opening w=0.0  offset=0.0
  B) l) E( e& b, F- C/ F# H      Laminate Layer 1   4.00    Resin Content  54.0% 2.6-5.1
# G" I& i2 s; I3 k3 q        Signal Layer 1   1.20  4.4-7.1-4.4  Etchback=0.007 ^/ W8 Z) X5 i- f  W
      Laminate Layer 2   4.00    Resin Content  54.0% 2.6-5.1 8 T& s, }' J+ O6 K7 I9 G5 @5 s
   Copper Plane Bottom   1.30    Opening w=0.0  offset=0.0
, `9 z: v% W8 t& S 7 k& e  b  r2 g" @- o
      Layer             Thick   Er    Loss Tangent
! X# P  G& r; |+ x% ~      Copper Plane Top   1.30  3.20   
  g& _) B. L* J$ Z& C4 v8 @      Laminate Layer 1   4.00  3.76    0.01230
9 p2 U* |# O$ r8 T        Signal Layer 1   1.20  2.64    0.01690* u) {4 v+ ~0 [! Q1 }
      Laminate Layer 2   4.00  3.76    0.01230
* G0 q; _1 V3 F$ |- `  k; W   Copper Plane Bottom   1.30  3.20& P* n5 d) ?9 k# f$ K0 [( C

! W0 b9 l2 m6 e$ }! W2 \ DC resistance by dimensions:5 ^% @) H* ^8 W; J& N
Rdc_trace_1= 128.54      Rdc_trace_2 = 128.54  milliohms/in 20C# P- ]$ j& t( R

" D( ]1 @- v$ e9 E2 m0 I DC resistance by pixel count:
* R6 V2 u5 [/ i& W( _ Rdc_trace_1= 128.542     Rdc_trace_2 = 128.542 milliohm/in9 ~% v" [+ r" _4 ]( v; g
C_odd      =   3.865 pF/in    C_even =   3.623 pF/in
* e7 P# E& S2 Q4 Y1 a Er_odd     =   3.588         Er_even =   3.6317 n. H/ `# ~; ~1 z
Loss_tan_o = 0.01283     Loss_tan_e  = 0.01270  ) u1 {3 q9 \% H+ l9 l2 g
Delay_odd  = 160.480      Delay_even = 161.455  ps/in.
4 w; Z) g( b5 Y Z_diff     =  83.041  ohms   Z_comm  =  22.280  ohms( a. E, z2 _8 F) W5 v; W5 e

$ i3 x: Y! W/ u  s$ Q* F$ I看完之后,我有一事不明,我总是分不清奇偶,不知道这两者到底如何区分,亲,你能告诉我吗?

该用户从未签到

2#
发表于 2012-12-1 14:21 | 只看该作者
我以前也分不清奇偶,后来强行记住了even是偶,搞的后来一看到odd,就要先想even是“偶”,odd只好是“奇”了,很是麻烦!( Q. Z+ u" S' Y  C( [: G$ I/ v8 A, c
你这一提醒,我以后可以换个记法了:odd是3个字母,“奇”数个字母;even是4个字母,“偶”数个字母。哈哈

评分

参与人数 1贡献 +4 收起 理由
beyondoptic + 4 方法很给力

查看全部评分

该用户从未签到

3#
发表于 2012-12-23 21:19 | 只看该作者
晕, 版主居然转贴到这里来了!+ n2 y( @" g" Q
汗!!!{:soso_e110:}
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-11 04:23 , Processed in 0.125000 second(s), 25 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表