找回密码
 注册
关于网站域名变更的通知
查看: 535|回复: 1
打印 上一主题 下一主题

MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-12-9 11:11 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本): x2 [" V2 h; a& z( j1 D; L
2 b& F# X+ P* g" M

8 t, e0 a+ W6 @5 B  v, O上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本): e8 r& B$ B: H, p% G4 f5 L
那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
+ O  c0 U5 `9 d" ?
: U% x6 m9 G# Y) B这篇就是为此而写。
7 v" l/ j3 u7 y9 ^. i
; c, Z* c0 [$ n! X案例:
- D6 ?5 f0 J9 m# v. b5 V# E9 a9 g# Z1 `  M0 V
) {& P2 D2 ~4 q, L! J$ ?& Y% K

7 Z3 j: f# ~: K想要基于有限样本数来确定他的频谱。
- A4 i+ _* v- S! s4 C( E
5 _8 x' X" f% g4 {) B9 c下面我们分如下几种情况来分别讨论:
8 f7 v* G2 s: P: L
$ U- j3 y( l) a, ^  sa. 求出并画出   ,N = 10 的DFT以及DTFT;
! k" d  k, s! M/ |; T0 R! r2 X! C% b5 @
b. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;
& k. t- O; O1 N7 L& m+ ]' O! V# O# O8 @9 T- X# D1 F
c.求出并画出   ,N = 100 的DFT以及DTFT;. s% z% H. X5 W* s: m0 B' o% H

# w5 g# i' v% f3 d# @d.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;$ s: z% K3 D- }( N0 g
( O8 J% m' [7 _5 a& z/ p& ?
e. 比较c和d这两个序列的序列的DFT以及DTFT的异同。# h+ S3 X1 H6 e
1 _* p! I; [# W5 G* I
那就干呗!
! Z6 f6 ]3 B2 \( \- o6 g+ @/ G: m0 H# X9 _' }& {: c1 ^
题解:
; N: W  y$ _' m6 C# H
7 ^$ Q% h# s1 N( s. G: H4 H" \) da.
9 R+ f- `! N0 L  r* j) c
( Z9 R/ U5 O( h. D2 c' I2 |
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • n1 = 0:9;
  • y1 = x(1:10);
  • subplot(2,1,1)
  • stem(n1,y1);
  • title('signal x(n), 0 <= n <= 9');
  • xlabel('n');ylabel('x(n) over n in [0,9]');
  • Y1 = dft(y1,10);
  • magY1 = abs(Y1);
  • k1 = 0:1:9;
  • N = 10;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magY1);
  • title('DFT of x(n) in [0,9]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = y1*exp(-j*n1'*w);
  • magX = abs(X);
  • hold on
  • plot(w/pi,magX);
  • hold off/ j8 b. k! a8 o5 R/ n- \( f0 B
      - L1 t# L3 q9 o4 }( {# ]- d

3 F; Q; V$ `$ w2 i1 F% e; C% `
5 B0 a3 ]$ r$ db.
" q0 A" p  g6 X! |, `  P/ C
# T6 G% y/ F* }3 A% ~8 T
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % zero padding into N = 100
  • n1 = 0:99;
  • y1 = [x(1:10),zeros(1,90)];
  • subplot(2,1,1)
  • stem(n1,y1);
  • title('signal x(n), 0 <= n <= 99');
  • xlabel('n');ylabel('x(n) over n in [0,99]');
  • Y1 = dft(y1,100);
  • magY1 = abs(Y1);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magY1);
  • title('DFT of x(n) in [0,9]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = y1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off

  • 0 R0 E$ W' o5 l4 T: X$ M
      
6 T. N1 a% S7 h. w: X
5 z- u& ?. U6 g + v. K/ f& z# f- y% L& L; ?

, z" F6 Y" _* b2 ^+ Z5 J% ^c.2 k/ B# U" O8 S- H) B4 q3 P

5 N" f7 F$ p5 I8 _! x! M, H
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • subplot(2,1,1)
  • stem(n,x);
  • title('signal x(n), 0 <= n <= 99');
  • xlabel('n');ylabel('x(n) over n in [0,99]');
  • Xk = dft(x,100);
  • magXk = abs(Xk);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,99]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x*exp(-j*n'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • $ v/ ^, s! O* ~& t1 ~
      
: q+ C, R" ^: ]( H" X/ V, i
5 J8 w5 j2 v: S" g. V6 B
! J" C8 N& Y0 O+ ?0 k/ n- I, O: c9 L
3 O. h4 Q8 V; c/ B太小了,放大看:1 y) q% @! E, J* X: G& u2 L

. q* n, J) @$ u6 F( ~
1 S: f- \" s/ a% s8 _0 ?3 l  ]7 I0 W1 T7 i% Z& G
7 I  i* ~! b  E8 R5 C9 Y0 g

9 l" Q: H! y9 r; {5 B' dd.
" I# ~7 C( M2 y9 {  V$ A/ ~2 x
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • %zero padding into N = 500
  • n1 = 0:499;
  • x1 = [x,zeros(1,400)];
  • subplot(2,1,1)
  • stem(n1,x1);
  • title('signal x(n), 0 <= n <= 499');
  • xlabel('n');ylabel('x(n) over n in [0,499]');
  • Xk = dft(x1,500);
  • magXk = abs(Xk);
  • k1 = 0:1:499;
  • N = 500;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • % stem(w1/pi,magXk);
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,499]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX,'r');
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • 5 e- \& P7 N5 Y5 b+ @* Z
      
' T$ i/ d* u+ O5 ]7 n. E# b
& g7 K, Z) ~+ N/ x. ^
5 h% ]+ G5 v& E0 \* M3 `6 g( a+ `4 J
e.2 P5 k/ Z# m; ^3 z/ X  u
, Y- d9 v9 S8 R4 S! L
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • subplot(2,1,1)
  • % stem(n,x);
  • % title('signal x(n), 0 <= n <= 99');
  • % xlabel('n');ylabel('x(n) over n in [0,99]');
  • Xk = dft(x,100);
  • magXk = abs(Xk);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,99]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x*exp(-j*n'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • % clc;clear;close all;
  • %
  • % n = 0:99;
  • % x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • %zero padding into N = 500
  • n1 = 0:499;
  • x1 = [x,zeros(1,400)];
  • subplot(2,1,2);
  • % subplot(2,1,1)
  • % stem(n1,x1);
  • % title('signal x(n), 0 <= n <= 499');
  • % xlabel('n');ylabel('x(n) over n in [0,499]');
  • Xk = dft(x1,500);
  • magXk = abs(Xk);
  • k1 = 0:1:499;
  • N = 500;
  • w1 = (2*pi/N)*k1;
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,499]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX,'r');
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
    & x! C- z7 x7 j" B
     % O  P* }# w* c. ]1 [$ j
8 `+ G: z* z# T- [

0 }- i/ ^- F# ~1 G9 l3 w) v
; u8 j' z. B# F8 {局部放大看:
; R+ F" r( i5 {# N2 z$ D- F. ~
5 t  t( Y- D% I
0 F7 o6 L1 v3 |" }
! s0 P! T3 T% N/ D 7 T) X) E# r- x; H5 D' v
' H) {6 ^' e( R' c, q) W; ], s

3 Y' Q/ t" J1 d: K4 y1 B& Y
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-6-12 03:28 , Processed in 0.078125 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表