|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本): ^' N) N- O6 R2 I
3 {- m7 w. ^) e0 h/ T/ ^1 f5 ]% \
上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)1 M) U" e# \$ a9 @8 g! W! V2 }
那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
* j7 g% W! T8 J6 D9 j5 r- ^1 L+ |) G: l6 @1 i; {
这篇就是为此而写。
7 l- Y) b$ v. T3 P0 D O/ Z b2 u- ~- Q, u
案例:
9 a7 Y! d7 `5 `! [6 Q* B+ L6 l7 ~% y; D) M
- Y3 A$ }# k/ ?4 b, h# T6 `* E' ]
: s" {0 E' Q9 b$ U& O想要基于有限样本数来确定他的频谱。
1 N3 c' L5 u" u0 s G
& y# ~: f$ b8 T7 ?下面我们分如下几种情况来分别讨论:3 ^. H1 a) @4 G) ] ` @
' f9 A5 \' ~3 J( w4 D3 r
a. 求出并画出
,N = 10 的DFT以及DTFT;
* [. Q3 t r4 X* { {7 C* z, X+ x G6 q6 l
b. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;4 g# i& L0 R# Y( Q" C6 F
; q3 J. b3 t' g
c.求出并画出
,N = 100 的DFT以及DTFT;
' O' b ~+ P& g$ }" Q4 F/ B% V& I o: Z A# S8 W: l
d.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;9 W0 I4 a# d: T; q0 Z) X9 ^( {. J3 m0 `
! o& j: k7 z# I. ^* u# l* r& Pe. 比较c和d这两个序列的序列的DFT以及DTFT的异同。7 x9 A' Y; W* c: J
# \% _5 @4 A0 Z+ d0 K
那就干呗!
: ]$ V3 E" |; X
& A4 H4 g6 s! V" X) Z1 T' n题解:
3 d1 [+ |! [. n) e0 I3 W+ ]+ t1 [: V; Z8 b" N! O
a.
- X* i2 M+ A' \* _4 k- T8 p3 ]
1 R4 {# {# P c4 {' u- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off- ]/ F0 t& I+ Y: m' T- Z
0 q' m! N+ l) Q; c0 v6 ]+ T1 M
$ ^1 z$ P$ t" D% Q* C
0 r1 K$ d2 x1 K2 i" w8 B5 gb.! M. p/ g0 t* L% w' R# f
: o) M$ l) W$ _+ ~: C8 o a8 q
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % zero padding into N = 100
- n1 = 0:99;
- y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Y1 = dft(y1,100);
- magY1 = abs(Y1);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
5 ?: d1 k& Z2 H; G- j Y) b
7 O4 i3 g$ K. I3 c8 S' _+ q
* R8 j+ H2 I1 a& k, Y
9 c! s8 E( k/ l
5 N" g4 j) w! c6 Q$ t# n1 K. v5 ]( _
c.3 R2 h$ D- {* x# f3 Z! @) n8 s! t
/ d- z, C' Z6 v- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
8 e% @; ~2 M$ z; R
, m$ b& p* `7 _: N' w" X
C7 y5 f- [! M0 `; @0 Z8 H! c( G. j$ x
9 s% H! U! s2 D+ G太小了,放大看:
8 S. P. M* A( Y8 ~
; J6 z& a! V/ S {% C$ B+ x) b
) L) P: s- B4 _1 |0 R
" h6 @% _& H( E
) q( A2 M7 w0 [. t- F2 U7 t- d
9 C& u9 X) Q9 l I& y6 Nd.
0 B7 ^' ]9 |& G$ m+ o$ }! P9 M
" e4 r+ w( P: Q6 y* M, ]! L" p- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,1)
- stem(n1,x1);
- title('signal x(n), 0 <= n <= 499');
- xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- % stem(w1/pi,magXk);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- " M7 d6 W) c+ U/ U# t
e& B1 o5 f" d. D, u
- I4 @: t$ b2 Z* h; ?" P/ n9 n
$ m& N$ }2 M1 p! D# C) w' r( g% F4 E. K8 ?1 B" H* Q0 q
e.+ X9 w) n- d% u! W# S3 H7 [
+ |, [( a. ~2 N. b/ t. o4 D
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- subplot(2,1,1)
- % stem(n,x);
- % title('signal x(n), 0 <= n <= 99');
- % xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- % clc;clear;close all;
- %
- % n = 0:99;
- % x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,2);
- % subplot(2,1,1)
- % stem(n1,x1);
- % title('signal x(n), 0 <= n <= 499');
- % xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
/ d( Z! D+ J, G. V( K$ J/ D ( y3 h' `% X; u
( r4 V* [* k2 K. ~; K: E& A
. B% Q# v/ u9 A$ d
7 V- p3 G7 E" p' r2 g" ^) m% G F局部放大看:
; u! F8 O9 Y6 f y1 e7 @" r3 k8 ?. \) f/ _1 `* c1 B
0 O; a0 [' L% D" ^) K
9 ^! d" y6 T6 C% I( \1 ]; H5 c7 ?
+ T. n6 Q9 X/ D, j$ O: s# X8 U4 I
4 X$ P. ]% O8 E2 U a$ A# A
. T6 F Y. E. B |
|