|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本)
* u" [- H0 t2 Y4 q' @
: _+ Z$ [' t! y: H8 }( ?( ~0 ?) A, _. m: k+ |. h9 E7 T5 D. c
上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)
! y F. c* r9 u. o) t3 d5 v那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
; S1 [; M, J4 ^, g
& F3 x5 X- m6 {: j这篇就是为此而写。$ G4 L9 S. z1 ^5 L: `4 N( |
! i6 b. ?3 o6 h( ^/ e
案例:
1 Y2 P1 u% y6 I3 t6 v, P
) I2 R" |% K, v. g. X
& X8 ~1 y2 N! ^" r
; |) b' t4 y+ d想要基于有限样本数来确定他的频谱。" k1 a) v3 G, k: n9 M
0 f, S: Z& ^8 Y4 Q
下面我们分如下几种情况来分别讨论:7 t, `" _. F2 B
' v: F( A4 |8 s- za. 求出并画出
,N = 10 的DFT以及DTFT;2 I9 l! g$ I! p7 a5 H* w
6 n3 J; C/ G& |) K; T4 Cb. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;
- ~& i; Y. `% x) t: ^. b3 z- t/ Y, V5 J. Z. e
c.求出并画出
,N = 100 的DFT以及DTFT;7 m9 l) ~- a% W3 u
* L/ U1 Y/ k2 f
d.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;
; b$ {; w. g: F7 C# b2 V
; L; {9 Q! h: Y I# Q; Te. 比较c和d这两个序列的序列的DFT以及DTFT的异同。
; f" T) ^: t$ h( t. l V ~) o+ k' {! S( c( R3 }6 ~* d
那就干呗!0 I, Y( C- r; H; F) Z
$ I( m/ j# M" J题解:
) |6 {9 `4 S6 F- S
0 y: j! [* H# Ba." Y7 `4 r" O1 l
, j7 ?) d$ ` T. O2 R
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
1 W# t' t8 p5 v. P6 Z8 i6 _ P - K4 l, [- x+ r% d
+ A7 \' P# w3 H. c
2 R: r, A! D9 v
b.5 Q6 U0 s c! I, b% N" t k
) Y+ d) d3 \) D
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % zero padding into N = 100
- n1 = 0:99;
- y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Y1 = dft(y1,100);
- magY1 = abs(Y1);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
" }# L8 p* |* a! {! i
0 f! L$ ~/ P2 M/ e% l" r- ^
; N! I$ z0 m* l% ~& ?* D , C1 k. w! M. {) l2 \+ K; U
1 n y: T1 q* [% p8 P; zc.
% e/ P% Q. `- x. C& d% A8 y& q& l0 g6 `+ P2 _
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
' ^0 p! J! x( z' ?5 A0 `7 h. D. g
* e; ]8 ?1 P( I7 n% ]$ m& _, O
9 F9 z$ |, x! w. Q; {( }" s% l
6 o7 ?3 r" g5 c& M
# ]7 F4 x8 P" H1 Y3 W太小了,放大看:0 C! @% E8 i z4 i0 x
8 G- T3 \: F5 d8 `- v
% p5 P3 D0 V# }% W5 b
- e9 D, y9 X& b! a 0 m8 X( _* a8 b$ ? B% d; N
- b( e* c3 m' t$ C0 Rd.
$ }& S, _ [5 g0 ]
8 I* }/ B9 s: m0 V1 ~, q- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,1)
- stem(n1,x1);
- title('signal x(n), 0 <= n <= 499');
- xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- % stem(w1/pi,magXk);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
$ X" G; }" |" c7 |0 O
* ]) w2 O1 E/ B( t2 J
2 s( P% Z$ u; [( r5 c/ k. p B8 G/ G1 h \4 S9 O. h' V/ @
" o2 \3 {: j2 R+ w5 u6 S, l9 b# K# t
e.
6 A& _" Z2 }3 n- k( n) Z! \/ H8 l: E( S1 N, q
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- subplot(2,1,1)
- % stem(n,x);
- % title('signal x(n), 0 <= n <= 99');
- % xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- % clc;clear;close all;
- %
- % n = 0:99;
- % x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,2);
- % subplot(2,1,1)
- % stem(n1,x1);
- % title('signal x(n), 0 <= n <= 499');
- % xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off4 b1 W: |# w9 ?& i$ H
) D/ s* ]' ~: Y# k, M
2 T8 l( z0 s$ L) F' `( b! r
8 Z+ k6 j: \" r" }- x5 p' ^9 }4 o; Y3 ]6 d% l
局部放大看:
* t/ s- O- B8 G! U6 t2 Z2 F: @; D0 ^, Q2 ` N- ^3 K* y+ q+ l
( p) J0 f8 k$ E9 {& ~ Y
( A- s0 V1 D& F, Y: h7 ]; b: K
1 e! x5 N4 E: g8 e0 I+ _$ ^. g: J' G2 W" W: q5 X
' s7 t6 D" r7 k9 g |
|