找回密码
 注册
关于网站域名变更的通知
查看: 794|回复: 13
打印 上一主题 下一主题

IC芯片的生产流程:设计,制造,封装

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2021-9-10 10:41 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
一、复杂繁琐的芯片设计流程
1 _2 s9 {( ^0 i1 ?
, Y( O) i( G# N0 _芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的 IC 芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是 IC 设计中的建筑师究竟是谁呢?本文接下来要针对 IC 设计做介绍。* a9 [. A/ A! d1 F; @* ^

. [0 [* D, s8 [* E在 IC 生产流程中,IC 多由专业 IC 设计公司进行规划、设计,像是联发科、高通、Intel 等知名大厂,都自行设计各自的 IC 芯片,提供不同规格、效能的芯片给下游厂商选择。因为 IC 是由各厂自行设计,所以 IC 设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗 IC 芯片时,究竟有那些步骤?设计流程可以简单分成如下。& H. y( Y) i1 o
* x3 z1 i! S4 c* D, Y6 n+ M
设计第一步,订定目标
9 R. T6 [8 z' `/ Q4 L
7 Z& H' p9 {0 L" R在 IC 设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计, 这样才不用再花额外的时间进行后续修改。IC 设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。
* N# f+ a+ g1 }! L& k1 F
- _1 D) j+ m- y6 r& j3 V  P规格制定的第一步便是确定 IC 的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合 IEEE 802.11 等规範,不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是确立这颗 IC 的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。
4 I9 e5 x& y; R% ~6 q8 G2 M( K0 d& m( Z7 L6 D8 G! V1 q1 O4 k9 ^$ U' w
设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在 IC 芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的 HDL 有 Verilog、VHDL 等,藉由程式码便可轻易地将一颗 IC 地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。7 I  l( v1 D  O7 ?. U0 T  V
4 t6 [* Q$ T6 O$ ^6 n& \3 B" P1 Q
" ?, p! }8 G4 x+ ~/ y* A, G
/ Y$ V. o' ?. S% m  l/ l/ S1 g1 o6 T

5 g2 f% D/ [6 o9 c1 F+ S有了电脑,事情都变得容易
  x/ z5 H! K# |: L) i: J4 H' L5 _" \9 V& V( m9 J! l9 M, a1 b# s
有了完整规画后,接下来便是画出平面的设计蓝图。在 IC 设计中,逻辑合成这个步骤便是将确定无误的 HDL code,放入电子设计自动化工具(EDA tool),让电脑将 HDL code 转换成逻辑电路,产生如下的电路图。之后,反覆的确定此逻辑闸设计图是否符合规格并修改,直到功能正确为止。
* }. e5 q4 \" L$ g; J
& p0 p! r: \5 Y0 ~5 ~2 I$ ^
3 G' K8 Z  A+ N: T% `9 Y9 {5 N3 @# J
▲ 控制单元合成后的结果
( w* q8 x; G% h( M0 T
  y. i. d  r6 J最后,将合成完的程式码再放入另一套 EDA tool,进行电路布局与绕线(Place And Route)。在经过不断的检测后,便会形成如下的电路图。图中可以看到蓝、红、绿、黄等不同颜色,每种不同的颜色就代表着一张光罩。至于光罩究竟要如何运用呢?2 o0 v6 _. l8 F" p, [* d

( p# Z' U: T! H
5 T1 b7 w/ W8 X, H" D4 H  O1 K% x# r* f, c. U6 c( M
▲ 常用的演算芯片- FFT 芯片,完成电路布局与绕线的结果
* ?0 X; _7 K3 j% B
1 |7 T" R0 G; d- E% z! N层层光罩,叠起一颗芯片
7 ?- E/ s) \0 A7 R+ ?, I* u3 j+ C
0 C  j- b- a2 [4 y0 l/ n+ l首先,目前已经知道一颗 IC 会产生多张的光罩,这些光罩有上下层的分别,每层有各自的任务。下图为简单的光罩例子,以积体电路中最基本的元件 CMOS 为範例,CMOS 全名为互补式金属氧化物半导体(Complementary metal–oxide–semiconductor),也就是将 NMOS 和 PMOS 两者做结合,形成 CMOS。至于什么是金属氧化物半导体(MOS)?这种在芯片中广泛使用的元件比较难说明,一般读者也较难弄清,在这里就不多加细究。
$ y7 k+ `) U& i+ n' `- m6 H/ ?
7 g% @$ g2 s- v' U$ [" A# O下图中,左边就是经过电路布局与绕线后形成的电路图,在前面已经知道每种颜色便代表一张光罩。右边则是将每张光罩摊开的样子。制作是,便由底层开始,依循上一篇 IC 芯片的制造中所提的方法,逐层制作,最后便会产生期望的芯片了。. V9 @# s0 c9 K: w

) }/ ^! w! l8 T( \# j) B, y
2 l. d0 D& h3 ~  ~5 X& m$ C6 n" O/ G# |) u. X
至此,对于 IC 设计应该有初步的了解,整体看来就很清楚 IC 设计是一门非常复杂的专业,也多亏了电脑辅助软体的成熟,让 IC 设计得以加速。IC 设计厂十分依赖工程师的智慧,这里所述的每个步骤都有其专门的知识,皆可独立成多门专业的课程,像是撰写硬体描述语言就不单纯的只需要熟悉程式语言,还需 要了解逻辑电路是如何运作、如何将所需的演算法转换成程式、合成软体是如何将程式转换成逻辑闸等问题。; x) W  ]; I* H

) E0 I; }1 \3 O# w, j二、什么是晶圆?; k/ W( w5 ?8 N1 o

+ k: J! v, p8 @: }在半导体的新闻中,总是会提到以尺寸标示的晶圆厂,如 8 寸或是 12 寸晶圆厂,然而,所谓的晶圆到底是什么东西?其中 8 寸指的是什么部分?要产出大尺寸的晶圆制造又有什么难度呢?以下将逐步介绍半导体最重要的基础——「晶圆」到底是什么。
' B$ l2 K- S6 f8 H1 Z% R8 v$ R1 R& Q
晶圆(wafer),是制造各式电脑芯片的基础。我们可以将芯片制造比拟成用乐高积木盖房子,藉由一层又一层的堆叠,完成自己期望的造型(也就是各式芯 片)。然而,如果没有良好的地基,盖出来的房子就会歪来歪去,不合自己所意,为了做出完美的房子,便需要一个平稳的基板。对芯片制造来说,这个基板就是接 下来将描述的晶圆。
& z, g- w3 c5 r  ?0 D9 D4 I' y+ o
! O; e- H- v. ~2 J8 I3 y4 w$ V# `. v
首先,先回想一下小时候在玩乐高积木时,积木的表面都会有一个一个小小圆型的凸出物,藉由这个构造,我们可将两块积木稳固的叠在一起,且不需使用胶水。芯片制造,也是以类似这样的方式,将后续添加的原子和基板固定在一起。因此,我们需要寻找表面整齐的基板,以满足后续制造所需的条件。, |9 J" y0 V- P/ N, ]7 u/ f
8 K) X( ~; D* d
在固体材料中,有一种特殊的晶体结构──单晶(Monocrystalline)。它具有原子一个接着一个紧密排列在一起的特性,可以形成一个平整的原 子表层。因此,采用单晶做成晶圆,便可以满足以上的需求。然而,该如何产生这样的材料呢,主要有二个步骤,分别为纯化以及拉晶,之后便能完成这样的材料。
6 g% g% A  O5 r1 a: ?1 d
" t) I" J- `) F; s& s) ~# e# F如何制造单晶的晶圆
' F: s! ^. ]* ?! }& U/ u2 v3 v9 V& S% H
纯化分成两个阶段,第一步是冶金级纯化,此一过程主要是加入碳,以氧化还原的方式,将氧化硅转换成 98% 以上纯度的硅。大部份的金属提炼,像是铁或铜等金属,皆是采用这样的方式获得足够纯度的金属。但是,98% 对于芯片制造来说依旧不够,仍需要进一步提升。因此,将再进一步采用西门子制程(Siemens process)作纯化,如此,将获得半导体制程所需的高纯度多晶硅。7 Q3 Y: ]  \1 g4 _
; p  l" @# U0 R% \/ X: M
+ \. I0 H: J! H

/ H% i) q9 D* ?* @% n1 t2 z
$ p0 J: f1 D2 Q2 J0 x  \( P1 [接着,就是拉晶的步骤。首先,将前面所获得的高纯度多晶硅融化,形成液态的硅。之后,以单晶的硅种(seed)和液体表面接触,一边旋转一边缓慢的向上 拉起。至于为何需要单晶的硅种,是因为硅原子排列就和人排队一样,会需要排头让后来的人该如何正确的排列,硅种便是重要的排头,让后来的原子知道该如何排 队。最后,待离开液面的硅原子凝固后,排列整齐的单晶硅柱便完成了。& M0 D7 X% f8 U  j" C( n
0 Y2 A1 S# Y1 P3 W. t& R6 i0 `

+ G" C' O" I, @4 o! m) M* @2 l* q7 E; s7 `# B% M

  v. ?+ }- t5 ^
9 i3 n. T" W4 C然而,8寸、12寸又代表什么东西呢?他指的是我们产生的晶柱,长得像铅笔笔桿的部分,表面经过处理并切成薄圆片后的直径。至于制造大尺寸晶圆又有什么 难度呢?如前面所说,晶柱的制作过程就像是在做棉花糖一样,一边旋转一边成型。有制作过棉花糖的话,应该都知道要做出大而且扎实的棉花糖是相当困难的,而 拉晶的过程也是一样,旋转拉起的速度以及温度的控制都会影响到晶柱的品质。也因此,尺寸愈大时,拉晶对速度与温度的要求就更高,因此要做出高品质 12 寸晶圆的难度就比 8 寸晶圆还来得高。
6 m& Y3 b4 k! H( `  i/ Y  m4 j
3 i$ R. Y- m7 f! A2 W只是,一整条的硅柱并无法做成芯片制造的基板,为了产生一片一片的硅晶圆,接着需要以钻石刀将硅晶柱横向切成圆片,圆片再经由抛光便可形成芯片制造所需的 硅晶圆。经过这么多步骤,芯片基板的制造便大功告成,下一步便是堆叠房子的步骤,也就是芯片制造。至于该如何制作芯片呢?
. `  X9 a: ^' n' g4 f- _1 J' F$ d5 d
层层堆叠打造的芯片
8 G. ^6 a; u! e+ X+ o( T
9 N2 c4 {) q7 H在介绍过硅晶圆是什么东西后,同时,也知道制造 IC 芯片就像是用乐高积木盖房子一样,藉由一层又一层的堆叠,创造自己所期望的造型。然而,盖房子有相当多的步骤,IC 制造也是一样,制造 IC 究竟有哪些步骤?本文将将就 IC 芯片制造的流程做介绍。$ \- I2 z, E# P2 D9 i

& q+ ], t5 ~, W, x7 ^% g在开始前,我们要先认识 IC 芯片是什么。IC,全名积体电路(Integrated Circuit),由它的命名可知它是将设计好的电路,以堆叠的方式组合起来。藉由这个方法,我们可以减少连接电路时所需耗费的面积。下图为 IC 电路的 3D 图,从图中可以看出它的结构就像房子的樑和柱,一层一层堆叠,这也就是为何会将 IC 制造比拟成盖房子。, M* C. K  ~& e8 x* R% @4 `3 g

3 T, D* B3 _; F% T6 L5 ]
  Z! v! M8 H7 B1 J1 u: D! A$ L" T! k3 t

$ Y+ ^1 y& ]# h
( H* s6 t3 b3 S' e' j从上图中 IC 芯片的 3D 剖面图来看,底部深蓝色的部分就是上一篇介绍的晶圆,从这张图可以更明确的知道,晶圆基板在芯片中扮演的角色是何等重要。至于红色以及土黄色的部分,则是于 IC 制作时要完成的地方。1 T  I/ a. z! c! _3 D+ E) e
! k6 H: Y3 `2 O" K& ^
首先,在这里可以将红色的部分比拟成高楼中的一楼大厅。一楼大厅,是一栋房子的门户,出入都由这里,在掌握交通下通常会有较多的机能性。因此,和其他楼 层相比,在兴建时会比较复杂,需要较多的步骤。在 IC 电路中,这个大厅就是逻辑闸层,它是整颗 IC 中最重要的部分,藉由将多种逻辑闸组合在一起,完成功能齐全的 IC 芯片。/ B' a+ T7 v! r+ l! B

- r& \" ]3 K4 G5 _0 J' t黄色的部分,则像是一般的楼层。和一楼相比,不会有太复杂的构造,而且每层楼在兴建时也不会有太多变化。这一层的目的,是将红色部分的逻辑闸相连在一 起。之所以需要这么多层,是因为有太多线路要连结在一起,在单层无法容纳所有的线路下,就要多叠几层来达成这个目标了。在这之中,不同层的线路会上下相连 以满足接线的需求。" X& E# i4 o( E9 E+ p& \/ h

; m6 o: k7 m0 v. c  b7 A! l分层施工,逐层架构
+ I$ J/ G% ~8 X. f7 x
/ e( x, i, T. F, ^5 g; H# m知道 IC 的构造后,接下来要介绍该如何制作。试想一下,如果要以油漆喷罐做精细作图时,我们需先割出图形的遮盖板,盖在纸上。接着再将油漆均匀地喷在纸上,待油 漆乾后,再将遮板拿开。不断的重复这个步骤后,便可完成整齐且复杂的图形。制造 IC 就是以类似的方式,藉由遮盖的方式一层一层的堆叠起来。% U: Y9 k4 V6 E; }7 R& G5 |- z
) w- h# b7 G' h5 a& s  ?/ t
& h7 r+ s7 D  I9 E+ j) q  G4 R
; \0 a& t+ F7 W9 I( d3 \5 J. f
制作 IC 时,可以简单分成以上 4 种步骤。虽然实际制造时,制造的步骤会有差异,使用的材料也有所不同,但是大体上皆采用类似的原理。这个流程和油漆作画有些许不同,IC 制造是先涂料再加做遮盖,油漆作画则是先遮盖再作画。以下将介绍各流程。  p4 W* X1 R1 u
2 c: R+ z" V! l8 k) H
金属溅镀:将欲使用的金属材料均匀洒在晶圆片上,形成一薄膜。5 i3 C2 p+ t( W* p" {) t4 }/ Q
  B& ?* U3 I5 O, @5 r9 V
涂布光阻:先将光阻材料放在晶圆片上,透过光罩(光罩原理留待下次说明),将光束打在不要的部分上,破坏光阻材料结构。接着,再以化学药剂将被破坏的材料洗去。& ^' N; F* V  l3 U2 X

& B4 e4 x/ U/ o, E! e蚀刻技术:将没有受光阻保护的硅晶圆,以离子束蚀刻。8 |5 |* ^; ~: \! A
# b/ g, Q; S# p, X
光阻去除:使用去光阻液皆剩下的光阻溶解掉,如此便完成一次流程。5 @, O, S1 W0 F" Y
& M5 @5 W: {( J
最后便会在一整片晶圆上完成很多 IC 芯片,接下来只要将完成的方形 IC 芯片剪下,便可送到封装厂做封装,至于封装厂是什么东西?就要待之后再做说明啰。
4 v+ L; v/ J3 D9 I3 b
$ u# K5 K! \: g! v0 I1 [7 A! ~% k) v6 E. \
8 F, W7 j  }8 }# p. X3 H
$ c1 i# l5 d8 b, N9 @* |
三、纳米制程是什么?& X4 n7 C* ~" o. c
2 T( r2 j& n& ]$ W% k1 W8 C- b: t
三星以及台积电在先进半导体制程打得相当火热,彼此都想要在晶圆代工中抢得先机以争取订单,几乎成了 14 纳米与 16 纳米之争,然而 14 纳米与 16 纳米这两个数字的究竟意义为何,指的又是哪个部位?而在缩小制程后又将来带来什么好处与难题?以下我们将就纳米制程做简单的说明。# _2 y" k/ v- j2 C1 i8 n

8 G. j. j3 k! P2 W" u/ v纳米到底有多细微?
3 O8 Z7 Q$ |% S) y1 l7 O/ ]
5 W6 Z' c8 x: e在开始之前,要先了解纳米究竟是什么意思。在数学上,纳米是 0.000000001 公尺,但这是个相当差的例子,毕竟我们只看得到小数点后有很多个零,却没有实际的感觉。如果以指甲厚度做比较的话,或许会比较明显。
2 R) M3 o/ s) j) I& W6 @' D% w2 [% U. l  _# _
用尺规实际测量的话可以得知指甲的厚度约为 0.0001 公尺(0.1 毫米),也就是说试着把一片指甲的侧面切成 10 万条线,每条线就约等同于 1 纳米,由此可略为想像得到 1 纳米是何等的微小了。8 v8 r3 O" a" H1 W; w

5 ]7 Z9 N) w; k5 C知道纳米有多小之后,还要理解缩小制程的用意,缩小电晶体的最主要目的,就是可以在更小的芯片中塞入更多的电晶体,让芯片不会因技术提升而变得更大;其 次,可以增加处理器的运算效率;再者,减少体积也可以降低耗电量;最后,芯片体积缩小后,更容易塞入行动装置中,满足未来轻薄化的需求。5 D7 \: {2 n: J# C" q

/ A5 F7 y* f1 [* C% W6 M再回来探究纳米制程是什么,以 14 纳米为例,其制程是指在芯片中,线最小可以做到 14 纳米的尺寸,下图为传统电晶体的长相,以此作为例子。缩小电晶体的最主要目的就是为了要减少耗电量,然而要缩小哪个部分才能达到这个目的?左下图中的 L 就是我们期望缩小的部分。藉由缩小闸极长度,电流可以用更短的路径从 Drain 端到 Source 端(有兴趣的话可以利用 Google 以 MOSFET 搜寻,会有更详细的解释)。
7 D. P( w0 G& @% w9 @5 `& y% |& T0 C+ P' B8 v  y. A

! M! w1 E6 k9 F7 E( k  Y3 ^7 Z% e% n+ h, y. E
此外,电脑是以 0 和 1 作运算,要如何以电晶体满足这个目的呢?做法就是判断电晶体是否有电流流通。当在 Gate 端(绿色的方块)做电压供给,电流就会从 Drain 端到 Source 端,如果没有供给电压,电流就不会流动,这样就可以表示 1 和 0。(至于为什么要用 0 和 1 作判断,有兴趣的话可以去查布林代数,我们是使用这个方法作成电脑的)
/ c& m" I: \! Q% T2 N  r1 i0 |. W' Z3 N
尺寸缩小有其物理限制
' Z5 e% H& {$ |# K  _1 M9 g$ H; j. D6 @8 I. q$ R9 B6 y
不过,制程并不能无限制的缩小,当我们将电晶体缩小到 20 纳米左右时,就会遇到量子物理中的问题,让电晶体有漏电的现象,抵销缩小 L 时获得的效益。作为改善方式,就是导入 FinFET(Tri-Gate)这个概念,如右上图。在 Intel 以前所做的解释中,可以知道藉由导入这个技术,能减少因物理现象所导致的漏电现象。
9 c! a& G4 e; J8 ~  ]9 W$ f% ^) |( ?" G& r" ~+ K8 f( l) }: Q

1 y$ T; }0 \, s$ {3 R* [7 C
8 |2 _7 i& e. }- K9 N  k+ m/ ^, s更重要的是,藉由这个方法可以增加 Gate 端和下层的接触面积。在传统的做法中(左上图),接触面只有一个平面,但是采用 FinFET(Tri-Gate)这个技术后,接触面将变成立体,可以轻易的增加接触面积,这样就可以在保持一样的接触面积下让 Source-Drain 端变得更小,对缩小尺寸有相当大的帮助。
0 J1 P$ Z0 y/ m5 l+ H$ t$ u7 j) {, ^2 |
最后,则是为什么会有人说各大厂进入 10 纳米制程将面临相当严峻的挑战,主因是 1 颗原子的大小大约为 0.1 纳米,在 10 纳米的情况下,一条线只有不到 100 颗原子,在制作上相当困难,而且只要有一个原子的缺陷,像是在制作过程中有原子掉出或是有杂质,就会产生不知名的现象,影响产品的良率。  O' u% K* S) ?( L9 \1 A$ f! |

2 k3 N3 L- I% W# Q$ G. t. ?如果无法想像这个难度,可以做个小实验。在桌上用 100 个小珠子排成一个 10×10 的正方形,并且剪裁一张纸盖在珠子上,接着用小刷子把旁边的的珠子刷掉,最后使他形成一个 10×5 的长方形。这样就可以知道各大厂所面临到的困境,以及达成这个目标究竟是多么艰巨。
4 L" R  C  K9 H
8 n8 F2 \7 E; i8 l6 F随着三星以及台积电在近期将完成 14 纳米、16 纳米 FinFET 的量产,两者都想争夺 Apple 下一代的 iPhone 芯片代工,我们将看到相当精彩的商业竞争,同时也将获得更加省电、轻薄的手机,要感谢摩尔定律所带来的好处呢。
7 \3 g4 s1 m/ e  `- s, M/ ?! w, A6 ~* u( f
四、告诉你什么是封装3 F1 i$ _0 ]  j" W% o% ^4 K2 f" }
5 h7 A8 Z3 Y: \' |9 V  |5 U
封装,IC 芯片的最终防护与统整
; e3 s% ]0 ?  }
6 [$ R6 C: ?- r0 E4 x9 F0 [2 m经过漫长的流程,从设计到制造,终于获得一颗 IC 芯片了。然而一颗芯片相当小且薄,如果不在外施加保护,会被轻易的刮伤损坏。此外,因为芯片的尺寸微小,如果不用一个较大尺寸的外壳,将不易以人工安置在电路板上。因此,本文接下来要针对封装加以描述介绍。
1 H! j1 L- u6 r/ L+ l/ [: ^$ b* I, ]: U0 L
目前常见的封装有两种,一种是电动玩具内常见的,黑色长得像蜈蚣的 DIP 封装,另一为购买盒装 CPU 时常见的 BGA 封装。至于其他的封装法,还有早期 CPU 使用的 PGA(Pin Grid Arrayin Grid Array)或是 DIP 的改良版 QFP(塑料方形扁平封装)等。因为有太多种封装法,以下将对 DIP 以及 BGA 封装做介绍。' }/ r9 R8 _3 c  v, b
/ L( }+ f7 M' r9 v
传统封装,历久不衰
4 w2 ~+ |% w0 C7 g3 r
; ]; d) v8 N" X# V) L. ?' Z  H9 d首先要介绍的是双排直立式封装(Dual Inline Package;DIP),从下图可以看到采用此封装的 IC 芯片在双排接脚下,看起来会像条黑色蜈蚣,让人印象深刻,此封装法为最早采用的 IC 封装技术,具有成本低廉的优势,适合小型且不需接太多线的芯片。但是,因为大多采用的是塑料,散热效果较差,无法满足现行高速芯片的要求。因此,使用此 封装的,大多是历久不衰的芯片,如下图中的 OP741,或是对运作速度没那么要求且芯片较小、接孔较少的 IC 芯片。/ b: Q5 O4 \- |: ^' P* U
: }0 Z4 W& l% A0 O
3 o% H9 \2 H7 r) r$ W% x

0 l+ ~. A$ q9 k6 _( ?! t▲ 左图的 IC 芯片为 OP741,是常见的电压放大器。右图为它的剖面图,这个封装是以金线将芯片接到金属接脚(Leadframe)。(Source :左图 Wikipedia、右图 Wikipedia)
! q7 y+ J0 u: n9 ~2 N1 y: O" ^: n9 B7 a
至于球格阵列(Ball Grid Array,BGA)封装,和 DIP 相比封装体积较小,可轻易的放入体积较小的装置中。此外,因为接脚位在芯片下方,和 DIP 相比,可容纳更多的金属接脚相当适合需要较多接点的芯片。然而,采用这种封装法成本较高且连接的方法较复杂,因此大多用在高单价的产品上。
- B  T. X0 z5 s8 _  F. g
3 Q+ `9 ^" e) S% r, h5 s* I7 a3 t& j+ B  V7 |4 }
' f* Y# z* \. }; l4 Q% _2 N
▲ 左图为采用 BGA 封装的芯片。右图为使用覆晶封装的 BGA 示意图。(Source:左图 Wikipedia)
7 a" X; `. r$ ~; z; _8 |9 B: W2 r( {  c8 g: T0 a
行动装置兴起,新技术跃上舞台9 R9 J/ T/ V8 D5 n6 U% K
8 I0 j+ w/ v/ ^) K# v  M2 B
然而,使用以上这些封装法,会耗费掉相当大的体积。像现在的行动装置、穿戴装置等,需要相当多种元件,如果各个元件都独立封装,组合起来将耗费非常大的 空间,因此目前有两种方法,可满足缩小体积的要求,分别为 SoC(System On Chip)以及 SiP(System In Packet)。( C" r  T6 D1 Y5 x

& U: k8 r2 k5 g5 p/ ~8 w在智慧型手机刚兴 起时,在各大财经杂誌上皆可发现 SoC 这个名词,然而 SoC 究竟是什么东西?简单来说,就是将原本不同功能的 IC,整合在一颗芯片中。藉由这个方法,不单可以缩小体积,还可以缩小不同 IC 间的距离,提升芯片的计算速度。至于制作方法,便是在 IC 设计阶段时,将各个不同的 IC 放在一起,再透过先前介绍的设计流程,制作成一张光罩。4 B* m4 R( g9 ~. Y6 e' a' F

0 `0 ]) _0 \/ |$ n5 j3 j  \然而,SoC 并非只有优点,要设计一颗 SoC 需要相当多的技术配合。IC 芯片各自封装时,各有封装外部保护,且 IC 与 IC 间的距离较远,比较不会发生交互干扰的情形。但是,当将所有 IC 都包装在一起时,就是噩梦的开始。IC 设计厂要从原先的单纯设计 IC,变成了解并整合各个功能的 IC,增加工程师的工作量。此外,也会遇到很多的状况,像是通讯芯片的高频讯号可能会影响其他功能的 IC 等情形。
5 Y! q) n! \7 |* a6 j1 A
* y' ^3 d. w7 [% w0 R$ i此外,SoC 还需要获得其他厂商的 IP(intellectual property)授权,才能将别人设计好的元件放到 SoC 中。因为制作 SoC 需要获得整颗 IC 的设计细节,才能做成完整的光罩,这同时也增加了 SoC 的设计成本。或许会有人质疑何不自己设计一颗就好了呢?因为设计各种 IC 需要大量和该 IC 相关的知识,只有像 Apple 这样多金的企业,才有预算能从各知名企业挖角顶尖工程师,以设计一颗全新的 IC,透过合作授权还是比自行研发划算多了。
  g: P& c2 ~& d! y
: e% a! ~" `7 k3 `! P折衷方案,SiP 现身
0 u% J, H% v! \! s3 G$ P& I2 F) A$ Z) e# F  }5 _, w4 D9 A4 ~% s' l
作为替代方案,SiP 跃上整合芯片的舞台。和 SoC 不同,它是购买各家的 IC,在最后一次封装这些 IC,如此便少了 IP 授权这一步,大幅减少设计成本。此外,因为它们是各自独立的 IC,彼此的干扰程度大幅下降。
% \: d  E3 T0 j1 J' G
1 O& }0 N; J. \% a, G& `/ r6 _# Y3 H7 d% G. `1 x
% Q  g% x4 O( {- Q/ X
▲ Apple Watch 采用 SiP 技术将整个电脑架构封装成一颗芯片,不单满足期望的效能还缩小体积,让手錶有更多的空间放电池。, I- _9 q" ]9 C% `/ q0 ^
采用 SiP 技术的产品,最着名的非 Apple Watch 莫属。因为 Watch 的内部空间太小,它无法采用传统的技术,SoC 的设计成本又太高,SiP 成了首要之选。藉由 SiP 技术,不单可缩小体积,还可拉近各个 IC 间的距离,成为可行的折衷方案。下图便是 Apple Watch 芯片的结构图,可以看到相当多的 IC 包含在其中。
' U, `6 ?$ n+ g( ?# D& U3 d" f, ]3 l# Y& r

1 u9 E" P* D; E4 y- ]+ i. E5 E/ }- j2 g+ x

# K. P/ C' ~/ r5 N

该用户从未签到

2#
发表于 2021-9-10 13:04 | 只看该作者
在 IC 设计中,最重要的步骤就是规格制定

该用户从未签到

3#
发表于 2021-9-10 13:25 | 只看该作者
可以可以  感谢分享

该用户从未签到

4#
发表于 2021-9-10 13:38 | 只看该作者
光阻去除:使用去光阻液皆剩下的光阻溶解掉,如此便完成一次流程
4 I% G2 y, o" d2 Y$ B1 d3 B5 S
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    6#
    发表于 2021-9-14 15:15 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    7#
    发表于 2021-9-14 15:36 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    8#
    发表于 2021-9-14 16:03 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    9#
    发表于 2021-9-14 16:13 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    10#
    发表于 2021-9-14 17:15 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    11#
    发表于 2021-9-14 17:31 | 只看该作者
    :lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    12#
    发表于 2021-9-14 17:50 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    13#
    发表于 2021-9-14 18:09 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol
  • TA的每日心情
    擦汗
    2021-10-21 15:19
  • 签到天数: 46 天

    [LV.5]常住居民I

    14#
    发表于 2021-9-15 09:15 | 只看该作者
    :lol:lol:lol:lol:lol:lol:lol:lol:lol
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-6-20 20:56 , Processed in 0.078125 second(s), 23 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表