EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
电磁兼容性(EMC)及关联的电磁干扰(EMI)历来都需要系统设计工程师擦亮眼睛,在当今电路板设计和元器件封装不断缩小、OEM要求更高速系统的情况下,这两大问题尤其令PCB布局和设计工程师头痛。; {, Y& ?2 J" _. w; q
EMC与电磁能的产生、传播和接收密切相关,PCB设计中不希望出现EMC。电磁能来自多个源头,它们混合在一起,因此必须特别小心,确保不同的电路、走线、过孔和PCB材料协同工作时,各种信号兼容且不会相互干扰。
. ^2 A2 k6 E+ m5 o+ T9 ?$ O9 t/ [$ l* D: h9 X& l7 E% t
另一方面,EMI是由EMC或不想要的电磁能产生的一种破坏性影响。在这种电磁环境下,PCB设计人员必须确保减少电磁能的产生,使干扰最小。! }2 p& G0 B! r# @. L. `0 J
8 d; e% F' I* i# P; ^
避免在PCB设计中出现电磁问题的7个技巧 : i4 Y: W+ r4 a# p; M; g O
技巧1:将PCB接地 8 S: o; H3 O6 o) w
降低EMI的一个重要途径是设计PCB接地层。第一步是使PCB电路板总面积内的接地面积尽可能大,这样可以减少发射、串扰和噪声。将每个元器件连接到接地点或接地层时必须特别小心,如果不这样做,就不能充分利用可靠的接地层的中和效果。; ^, N% E7 E; ~& `/ R* {
# A# l6 w7 |# Z# a$ l- P4 C1 k
一个特别复杂的PCB设计有几个稳定的电压。理想情况下,每个参考电压都有自己对应的接地层。但是,如果接地层太多会增加PCB的制造成本,使价格过高。折衷的办法是在三到五个不同的位置分别使用接地层,每一个接地层可包含多个接地部分。这样不仅控制了电路板的制造成本,同时也降低了EMI和EMC。
2 W7 p( _) X' T如果想使EMC最小,低阻抗接地系统十分重要。在多层PCB中,最好有一个可靠的接地层,而不是一个铜平衡块(copper thieving)或散乱的接地层,因为它具有低阻抗,可提供电流通路,是最佳的反向信号源。
7 I! r. m: W! a( X! N* H+ y1 y( M信号返回地面的时长也非常重要。信号往返于信号源的时间必须相当,否则会产生类似天线的现象,使辐射的能量成为EMI的一部分。同样,向/从信号源传输电流的走线应尽可能短,如果源路径和返回路径的长度不相等,则会产生接地反弹,这也会产生EMI。1 K D9 o6 D" H0 e7 R; p
& ]; y! m+ T4 H$ E+ f/ n: u
如果信号进出信号源的时间不同步,则会产生类似天线的现象,从而辐射能量,引起EMI : D* m2 n& q2 p, J: s3 Z
技巧2:区分EMI
2 ?! D) Y2 K1 n, S# `; m3 h! [由于EMI不同,一个很好的EMC设计规则是将模拟电路和数字电路分开。模拟电路的安培数较高或者说电流较大,应远离高速走线或开关信号。如果可能的话,应使用接地信号保护它们。在多层PCB上,模拟走线的布线应在一个接地层上,而开关走线或高速走线应在另一个接地层。因此,不同特性的信号就分开了。
& o* o- i: y& a5 s
6 Z) [% k1 g% {" q C3 y: q) }* D$ h! x有时可以用一个低通滤波器来消除与周围走线耦合的高频噪声。滤波器可以抑制噪声,返回稳定的电流。将模拟信号和数字信号的接地层分开很重要。由于模拟电路和数字电路有各自独特的特性,将它们分开至关重要。数字信号应该有数字接地,模拟信号应该终止于模拟接地。! z& n: s5 ?0 X* r5 I
9 F8 v1 T c- r# I+ Q在数字电路设计中,有经验的PCB布局和设计工程师会特别注意高速信号和时钟。在高速情况下,信号和时钟应尽可能短并邻近接地层,因为如前所述,接地层可使串扰、噪声和辐射保持在可控制的范围。
3 [) K- u. o* A% w5 c6 X$ }+ Z! U* C3 ?
数字信号也应远离电源平面。如果距离很近,就会产生噪声或感应,从而削弱信号。 技巧3:串扰和走线是重点 / ?/ g1 D- y$ n! w& i C
走线对确保电流的正常流动特别重要。如果电流来自振荡器或其它类似设备,那么让电流与接地层分开,或者不让电流与另一条走线并行,尤其重要。 两个并行的高速信号会产生EMC和EMI,特别是串扰。必须使电阻路径最短,返回电流路径也尽可能短。返回路径走线的长度应与发送走线的长度相同。- }0 T& ]: Q( Q; [# ]0 t
- d' D- m& x7 ]8 G. w
对于EMI,一条叫做“侵犯走线”,另一条则是“受害走线”。电感和电容耦合会因为电磁场的存在而影响“受害”走线,从而在“受害走线”上产生正向和反向电流。这样的话,在信号的发送长度和接收长度几乎相等的稳定环境中就会产生纹波。
- q, ?! G9 s9 q; u! ]
/ [) X. \8 p; x在一个平衡良好、走线稳定的环境中,感应电流应相互抵消,从而消除串扰。但是,我们身处不完美的世界,这样的事不会发生。因此,我们的目标是必须将所有走线的串扰保持在最小水平。如果使并行走线之间的宽度为走线宽度的两倍,则串扰的影响可降至最低。例如,如果走线宽度为5密耳,则两条并行走线之间的最小距离应为10密耳或更大。
: J& h' |1 v. m+ H
: G7 N- E4 r! w F随着新材料和新的元器件不断出现,PCB设计人员还必须继续应对电磁兼容性和干扰问题。 9 k' }8 C) R/ g, G+ \9 q# I
技巧4:去耦电容
9 {+ B0 Q8 Z. z4 Y+ ? n1 c$ B去耦电容可减少串扰的不良影响,它们应位于设备的电源引脚和接地引脚之间,这样可以确保交流阻抗较低,减少噪声和串扰。为了在宽频率范围内实现低阻抗,应使用多个去耦电容。 ' ?" L7 J4 T; Y
! {* O7 B* R0 n7 h- r: A放置去耦电容的一个重要原则是,电容值最小的电容器要尽可能靠近设备,以减少对走线产生电感影响。这一特定的电容器尽可能靠近设备的电源引脚或电源走线,并将电容器的焊盘直接连到过孔或接地层。如果走线较长,请使用多个过孔,使接地阻抗最小。 % a" T/ L: z' P9 d6 b" v! ^
技巧5:避免90°角 7 N6 o1 [, Z: O _( M
为降低EMI,应避免走线、过孔及其它元器件形成90°角,因为直角会产生辐射。在该角处电容会增加,特性阻抗也会发生变化,导致反射,继而引起EMI。 要避免90°角,走线应至少以两个45°角布线到拐角处。 J! L6 {' a! I" N3 r2 v! H
技巧6:使用过孔需谨慎
( L! Z# m U, y: Z+ e在几乎所有PCB布局中,都必须使用过孔在不同层之间提供导电连接。PCB布局工程师需特别小心,因为过孔会产生电感和电容。在某些情况下,它们还会产生反射,因为在走线中制作过孔时,特性阻抗会发生变化。% p: p" c/ z. L% v! p
9 g3 a3 o9 G& H: {5 I. r同样要记住的是,过孔会增加走线长度,需要进行匹配。如果是差分走线,应尽可能避免过孔。如果不能避免,则应在两条走线中都使用过孔,以补偿信号和返回路径中的延迟。
) C- L9 K, o. U$ B/ n. s5 v9 t
' i4 o! R( d, b: d1 V+ X技巧7:电缆和物理屏蔽 4 o1 r7 z2 g1 N" D0 n2 D$ X/ B
承载数字电路和模拟电流的电缆会产生寄生电容和电感,引起很多EMC相关问题。如果使用双绞线电缆,则会保持较低的耦合水平,消除产生的磁场。对于高频信号,必须使用屏蔽电缆,其正面和背面均接地,消除EMI干扰。2 b; u5 K+ a: \1 E
0 x/ t, l- ^1 A" A3 Q物理屏蔽是用金属封装包住整个或部分系统,防止EMI进入PCB电路。这种屏蔽就像是封闭的接地导电容器,可减小天线环路尺寸并吸收EMI。 / Y. e7 g+ Z7 B b8 F5 |9 |' \$ A
|