找回密码
 注册
关于网站域名变更的通知
查看: 467|回复: 2
打印 上一主题 下一主题

MOS管工作状态如何判断?

[复制链接]

该用户从未签到

跳转到指定楼层
1#
 楼主| 发表于 2024-1-9 09:18 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
MOS管工作状态如何判断?
8 v; i$ b1 T' r  K- }0 f+ N) k7 i$ {欧若奇科技" p, x: [7 p9 R% p9 C
$ a4 _% h% C% z1 W1 Z* o* J
专业电路设计,PCB复制,原理图反推,电子产品优化设计等
/ b, f" V& @: |2 r0 o/ q
/ _9 ?4 I, b5 N& X# h! x1 B8 {
: g8 {. L$ }0 f* e

) V+ A4 p. b, A2 j7 Q7 P( \% M7 H0 [$ ^
1 o8 n4 c, T$ ^3 I" w0 g
/ T# {) `+ U2 t7 @( E
/ c; F! C% _+ O; b# `) |
MOS管工作状态如何判断?

  l3 W; y, I5 \( G% R如何判断mos管工作状态
MOS管的工作状态一共有两种:增强型和耗尽型两类又有N沟道和P沟道之分。
MOS管是金属(metal)、氧化物(oxide)、半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)、半导体。MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。
如何判断mos管工作状态-N沟道增强型MOS场效应管
1. VGS对ID及沟道的控制作用
① VGS=0 的情况
从图1(a)可以看出,增强型MOS管的漏极D和源极S之间有两个背靠背的PN结。当栅——源电压VGS=0时,即使加上漏——源电压VDS,而且不论VDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流ID≈0。
② VGS>0 的情况
若VGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。
排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。
2. 导电沟道的形成:
当VGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。VGS增加时,吸引到P衬底表面层的电子就增多,当VGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。VGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。
开始形成沟道时的栅——源极电压称为开启电压,用VT表示。
上面讨论的N沟道MOS管在VGS<VT时,不能形成导电沟道,管子处于截止状态。只有当VGS≥VT时,才有沟道形成。这种必须在VGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压VDS,就有漏极电流产生。

' }6 g6 z7 u/ p% w3 L( ~8 k
9 s% M4 T8 Z! B% s5 k2 G2 s2 T& n( w; k* L' p
VDS对ID的影响
如图(a)所示,当VGS>VT且为一确定值时,漏——源电压VDS对导电沟道及电流ID的影响与结型场效应管相似。
漏极电流ID沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=VGS-VDS,因而这里沟道最薄。但当VDS较小(VDS)
随着VDS的增大,靠近漏极的沟道越来越薄,当VDS增加到使VGD=VGS-VDS=VT(或VDS=VGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大VDS,夹断点将向源极方向移动,如图2(c)所示。由于VDS的增加部分几乎全部降落在夹断区,故ID几乎不随VDS增大而增加,管子进入饱和区,ID几乎仅由VGS决定。
6 Z* C1 K( Y) V. {  q  c: I1 ]8 p/ E* `4 Z( I% }& _) N
2 Y8 Y3 B7 M8 W% w
如何判断mos管工作状态-N沟道增强型MOS场效应管
$ \; n7 z" i2 e, I4 s. L

6 o/ T6 D) @- _% z2 c, ~6 @4 Z/ m+ [; ?7 T5 K  |
(1)结构:N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。
(2)区别:耗尽型MOS管在VGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在VGS≥VT时才出现导电沟道。
+ ]* T# o8 T' h3 s) I# a! ^
(3)原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使VGS=0时,在这些正离子产生的电场作用下,漏——源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压VDS,就有电流ID。
如果加上正的VGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,ID增大。反之VGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,ID减小。当VGS负向增加到某一数值时,导电沟道消失,ID趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在VGS<0的情况下工作。而后者在VGS=0,VGS>0。
N沟道增强型MOS管MOS管曲线和电流方程
输出特性曲线
N沟道增强型MOS管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。转移特性曲线
转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用VDS大于某一数值(VDS>VGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线.?ID与VGS的近似关系。
与结型场效应管相类似。在饱和区内,ID与VGS的近似关系式为:

9 {# s- V5 j1 a% y" ^8 h1 f- sP沟道耗尽型MOS管
P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。

( j1 K4 J6 I, A1 t% j( @2 o7 \3 {6 I- r! {
" \1 u% X, L2 Z" a/ w9 f5 o
/ a  K2 I  D& ~- L; T3 I# {

& Q* u) k: v' K$ S9 B9 _. ~
  • TA的每日心情
    无聊
    2024-1-9 15:40
  • 签到天数: 26 天

    [LV.4]偶尔看看III

    2#
    发表于 2024-1-9 16:06 | 只看该作者
    11111111111111111111111111

    该用户从未签到

    3#
    发表于 2024-1-10 08:26 | 只看该作者
    掌握了米勒平台的原理,就基本算懂了MOS管。
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-7-10 12:01 , Processed in 0.109375 second(s), 22 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表