|
什么是Command Rate?$ X S' w9 C7 Z9 _+ r9 L3 b. j
7 ]" ^# D. p) t; H) L+ k 我们都知道,内存在读写操作中,存在着各种延迟(Delay)和潜伏期(Latency),比如常见到的tCL-tRCD-tRP-tRAS这些,但是我们常讨论的这些时序参数,都是发生在对L-Bank(逻辑Bank)的操作中,也就是发生在上面的第2-4步之中。 t" Z! s6 ^9 E' ]5 R! v
. U) B; C* G* o y* x
实际上,还有一个延迟,是发生在第1步和第2步之间的,即在选择一个P-Bank芯片集之后多少时间可以发出具体的寻址的L-Bank/行激活命令,称之为“首命令延迟”,也就是我们今天要讨论的Command Rate。
% A, M/ q% B+ i* @% E# e
" {: P9 p c& |7 I. K$ L& M Command Rate有时被称之为CMD,从前面的描述可以看出,CMD是发生在对内存芯片读写操作之前的,它和内存本身的关系不大,更取决于主板芯片组的设计。和其它时序的单位一样,CMD的单位为时钟周期。显然也是越短越好。但当随着现在内存向高频率高密度高容量发展,内存控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。
2 @: }1 _% u t" |
* m7 w3 Q1 N# c7 t% H& \6 }. N 在K8出现之前,Command Rate选项一般都不会在BIOS中出现,只能通过一些修改版BIOS对它进行设置。但随着K8内存控制器在功能和兼容性上的完善,Command Rate终于变成了主板BIOS中的标配。在随后的一些非英特尔主板芯片中都加入了Command Rate选项,虽然在名称上稍有差异。
3 V# M( r: {( w9 l0 u所有项目测试成绩的趋势如出一辙,即在相同条件下,无论是理论带宽测试,还是实际软件应用,Command Rate为1T时的性能要好于2T时的性能,但是这个优势是很微弱的,大概在1%-2%左右,这样的差别,也只有用测试数据才能看得出来。9 P/ P0 g+ j6 p, }9 z! h
! }% `& N+ C& ~* P
◆ CMD 1T/2T稳定性测试
; Q: @) S D5 J9 M" V9 b x, r' Z$ N" F
前面说过,随着内存向高频率高密度高容量发展,内存控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。我们通过寻找内存的极限频率来测试CMD 1T/2T对稳定性的影响。* \2 I2 }5 n1 G$ b" C
测试总结
" Y) h$ N1 x0 b. c! j9 ]' [& n* |$ |. \4 K3 C% x. o- ]
我们再回顾一下,Command Rate是指在物理Bank片选之后,到逻辑Bank激活之间的间隔,通常称为“首命令延迟”。Command Rate这个选项在越来越多的主板BIOS中出现,尤其是英特尔阵营的主板用户也逐渐能选择Command Rate是1T还是2T了。
+ z6 b) @3 A" @0 Q f4 V: _ l& |+ o' @
Command Rate只能选择是1T或2T,1T下的性能稍好于2T,领先幅度在1%-2%间,这对于狂热的性能追求者来说,是一个不错的可控参数。# Y) s; ^# [: T% c+ u) t0 s
5 F0 z/ l: `, M7 x+ `
最让我们应该关注的是,Command Rate 1T/2T对内存稳定性的影响,和性能上两者差距极小不同的是,稳定性的影响很明显,Command Rate为1T时,内存的稳定性大幅降低,直接表现为内存超频能力大降(2T时能超到1101MHz,1T时只能超到1005MHz)。显然和它带来的1%-2%的性能提升相比,内存频率的降低对性能损失更大。
' V" V5 f0 Y) u0 g. V; s
) Q9 v9 f6 V* I+ E1 y* b Command Rate为1T时能给系统性能带来“百尺竿头,更进一步”的效果,但是如果它影响到了系统的稳定,还是将Command Rate设置为2T吧。 |
|