|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1.电磁兼容导论英文版- {, m8 l8 r$ H q7 s; M m
《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。: k: O3 Y/ J3 N1 k
本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。
; c( E/ W( ?% f: _ X& k( i9 }+ W* Q
Contents
" P3 [2 B5 I% D% [2 Q% }Preface xvii
0 j6 F' Q# V2 y# `/ q9 G" r1 Introduction to Electromagnetic Compatibility (EMC) 1$ C; r! l4 {. B X! F: c
1.1 Aspects of EMC 3
* L9 N0 g* L: p/ p1.2 History of EMC 10
. p+ H: w" x. C% V- C' Y1.3 Examples 12
L7 i& r" f! P5 {3 p1 a" w# w1.4 Electrical Dimensions and Waves 14
* H, f8 b3 W: |8 n) e1.5 Decibels and Common EMC Units 23* A! U. m- i1 q1 \2 V# ^$ y
1.5.1 Power Loss in Cables 32; F9 f7 t( p, r3 ~9 ^
1.5.2 Signal Source Specification 37
! Y* M* b/ z+ d# \8 UProblems 43
3 O- J5 Y( q! N( YReferences 48
3 X6 s( g6 {; N4 J; \: }9 L) J2 EMC Requirements for Electronic Systems 49
7 V9 j7 T7 a# ?4 l7 c! @- t2.1 Governmental Requirements 50
( ?& H$ |# Y/ Z4 E2.1.1 Requirements for Commercial Products Marketed3 ?, S2 t5 S% e0 V' Z, |" F2 Z
in the United States 50
( d! n/ Y5 P- S6 l9 L8 L1 W2.1.2 Requirements for Commercial Products Marketed9 w; I0 L, x4 F1 W
outside the United States 55
; j( p, b1 \8 X, T; N( K- C4 E$ Z2.1.3 Requirements for Military Products Marketed in the
, z5 d$ C5 S8 B# wUnited States 60
. t. N. `) J* E6 C. \1 \2.1.4 Measurement of Emissions for Verification of Compliance 620 q) F' ]6 F! _4 u2 W3 n$ P2 r
2.1.4.1 Radiated Emissions 64
- R* r! @' h) g2 V. a- B3 [2.1.4.2 Conducted Emissions 67, g6 P! V1 N" g) n: G/ l7 p
2.1.5 Typical Product Emissions 724 e& I2 s0 t @; e9 G
2.1.6 A Simple Example to Illustrate the Difficulty in Meeting g; p. u7 |" Y t: j
the Regulatory Limits 78
% O% O' F, @, o+ tvii3 F3 m: x$ u$ d1 t6 \& t: d: q, ?3 l
2.2 Additional Product Requirements 79" |- b @1 ?* c0 k
2.2.1 Radiated Susceptibility (Immunity) 81
/ d, X- J0 u+ r0 t3 y4 C; o2.2.2 Conducted Susceptibility (Immunity) 81/ M6 v6 G q, a6 |0 z$ O
2.2.3 Electrostatic Discharge (ESD) 81, I- A7 k) ] F
2.2.4 Requirements for Commercial Aircraft 82
c. Y5 w7 s- g2.2.5 Requirements for Commercial Vehicles 82
9 K8 W( _6 ]3 J' I; X2.3 Design Constraints for Products 82
: G4 [2 i) `+ Y, x2 E3 o; R- b, g2.4 Advantages of EMC Design 84/ K) t/ ~" y. q, ~
Problems 86
* a a1 M2 ^+ A2 w& j* ZReferences 89- H- h2 A7 W i, e
3 Signal Spectra—the Relationship between the Time Domain and
% E5 i% o+ I4 Kthe Frequency Domain 912 g" x8 O8 V' P. }2 L: [
3.1 Periodic Signals 91
. u4 S: \6 R1 @5 ^8 G6 Z7 q6 \! O3.1.1 The Fourier Series Representation of Periodic Signals 94
# l3 B% [. a w2 r' J3.1.2 Response of Linear Systems to Periodic Input Signals 104
2 L0 j2 z. _4 z ^+ d3.1.3 Important Computational Techniques 111
! F5 j6 P( Q) g! O7 k3.2 Spectra of Digital Waveforms 118
* V3 S5 l& b- Z0 R5 N0 d4 M3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
9 S) L, C2 {4 d& _ C3.2.2 Spectral Bounds for Trapezoidal Waveforms 122$ D' r& o w& I
3.2.2.1 Effect of Rise/Falltime on Spectral Content 123
* |* f, T# h M2 J3.2.2.2 Bandwidth of Digital Waveforms 132
& p" j' w8 k3 u2 `) n' t5 Z3.2.2.3 Effect of Repetition Rate and Duty Cycle 136
. i. L& V# a- Y1 G7 u1 Y" m) X4 ]3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
/ c5 ~* P: S0 P1 ?* o3.2.3 Use of Spectral Bounds in Computing Bounds on the5 o' {' H$ j5 b3 |& v" f
Output Spectrum of a Linear System 140
7 y. f" m% O# B- D1 K3.3 Spectrum Analyzers 142, S9 }; p! H6 {* A
3.3.1 Basic Principles 142+ K. K* z m: l0 `. T+ i! |
3.3.2 Peak versus Quasi-Peak versus Average 146: v! c# z v& C+ w7 Z
' o$ m: G* o: b6 e, _' Q, U3.4 Representation of Nonperiodic Waveforms 148# p+ V, [6 b( t! y; X8 o. }
3.4.1 The Fourier Transform 148" H! I- _" a+ E2 A% z
3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
8 b. |, L6 G9 X' a" m0 H3.5 Representation of Random (Data) Signals 151
- B; j- l5 f5 [+ c8 g3 D& |; D3.6 Use of SPICE (Pspice) In Fourier Analysis 155
. C$ z2 l; S6 I" ^# JProblems 167
! N) p6 E4 y( |8 A" Q9 r6 \4 `References 175
, n- [4 H. d, b+ W3 s3 M4 Transmission Lines and Signal Integrity 177
3 j& \) h( D: o0 e8 P4.1 The Transmission-Line Equations 181
4 i, ?! F0 a4 J* u+ E4.2 The Per-Unit-Length Parameters 184' C2 i8 e: i6 w) N5 |% ?; Y
4.2.1 Wire-Type Structures 186
4 l, n$ k/ M- |+ }. Oviii CONTENTS5 L& A4 Z, z9 ~! Q
4.2.2 Printed Circuit Board (PCB) Structures 199
- }3 t# O. g1 h! x* ^3 q' @; Z4.3 The Time-Domain Solution 204
9 U! v/ Z0 f0 d' Q$ Z* e' Y: U- D& k8 k' E
4.3.1 Graphical Solutions 204' a* `% Y" R% J! g
4.3.2 The SPICE Model 218. g- X: W; Q; k- K1 |% J% O
4.4 High-Speed Digital Interconnects and Signal Integrity 225
9 t; G9 Z. I7 k& a4.4.1 Effect of Terminations on the Line Waveforms 230/ F# d8 _: {9 T! S, m) g4 l
4.4.1.1 Effect of Capacitive Terminations 233
/ L( t) f$ ^2 L* H0 P! L4.4.1.2 Effect of Inductive Terminations 236
4 e |2 Q# o1 g) o* R; R4.4.2 Matching Schemes for Signal Integrity 238
& ~+ j. c) q) S6 j4.4.3 When Does the Line Not Matter, i.e., When is Matching% o# l% Z, E0 `8 V8 u# a
Not Required? 244, K4 d: b8 I6 }, n- H) S
4.4.4 Effects of Line Discontinuities 247
: p/ |: ]* J) o6 a- u$ j4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260- S, O# W8 K& s3 K3 Z! J
4.5.1 Voltage and Current as Functions of Position 2616 i5 O. C9 d# T" h+ r% R
4.5.2 Power Flow 269) n; }9 x N; L, l d
4.5.3 Inclusion of Losses 270
, P, ?" E) q2 H) p+ N, R/ E4.5.4 Effect of Losses on Signal Integrity 273
c5 _* |" u9 H3 _3 i1 W4 k8 a4.6 Lumped-Circuit Approximate Models 2834 e1 z! T. v2 e" G* W
Problems 287! t+ B$ u k: k1 f) g) p
References 297
% v2 [2 }" H7 |4 J# t* t5 Nonideal Behavior of Components 299$ w6 Q5 S+ f x/ \
5.1 Wires 300
5 `& q* V1 p A* h7 m# ^; F5.1.1 Resistance and Internal Inductance of Wires 304
" z+ O: E+ b3 q7 _ ~5.1.2 External Inductance and Capacitance of Parallel Wires 308
6 p4 t; E+ \( M4 l, P: N' p% u5.1.3 Lumped Equivalent Circuits of Parallel Wires 3096 ^$ L0 i2 x [( @
5.2 Printed Circuit Board (PCB) Lands 312; b% H) \4 I7 E: o! J) K6 |
5.3 Effect of Component Leads 315
% n! n3 l& v. W1 {- u5.4 Resistors 317
% j+ g, Z* d+ Y. `5.5 Capacitors 325/ P. O: e8 n$ Z6 c
5.6 Inductors 336, Y# |5 k2 O! A6 E
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
6 s3 a/ d7 t5 r8 ~9 S: d4 f5.8 Ferrite Beads 343
W j1 y9 m4 v3 F' F9 @- \5 F5.9 Common-Mode Chokes 346
3 z1 ?- W/ }7 G/ Y: ~9 L% i9 Y5.10 Electromechanical Devices 352
/ p2 {' s0 w$ D2 H4 }5.10.1 DC Motors 352
8 S+ a4 G- W, N( n. E4 `6 h5.10.2 Stepper Motors 355
; z A# K& h* K. ^2 j2 A. E5.10.3 AC Motors 3559 r2 m7 C( d! Q0 w7 M/ a
5.10.4 Solenoids 3563 J) {' U- S* V1 X4 {8 E( j9 i
5.11 Digital Circuit Devices 357- T* o) [, K' `2 ]
5.12 Effect of Component Variability 3581 H& Y( p) S5 Z, e2 ]
5.13 Mechanical Switches 359% d- u# j! c4 g, G
5.13.1 Arcing at Switch Contacts 360
. D) B( t" k5 h; tCONTENTS ix
" X: a, Z' s a# y9 e$ h$ u" P5.13.2 The Showering Arc 363% o' F2 R+ m- Y* F
5.13.3 Arc Suppression 364
' k' ~9 A+ u4 G [Problems 369
# ?4 R4 V) S, G0 G; }! z, EReferences 3753 g' t% [/ P0 c! C n& V! z+ g
6 Conducted Emissions and Susceptibility 3777 i/ @. @ G0 I) H: `* P5 b2 r, H
6.1 Measurement of Conducted Emissions 378
$ U. w* ]2 R# ^4 X4 b6.1.1 The Line Impedance Stabilization Network (LISN) 379
( g1 T: H5 g# z& G8 q6.1.2 Common- and Differential-Mode Currents Again 381
% \4 \% P3 ]7 `& e$ n4 @6.2 Power Supply Filters 385
1 _8 Y! h* c) ?) U1 M/ \' a6.2.1 Basic Properties of Filters 385, q# D1 y% ? C9 @: q
6.2.2 A Generic Power Supply Filter Topology 388$ }8 B6 F$ T; E5 U
6.2.3 Effect of Filter Elements on Common- and
3 O5 @/ G3 ]6 JDifferential-Mode Currents 390
8 ?/ C/ a1 y0 F) t. [$ {5 s6 Z) S6.2.4 Separation of Conducted Emissions into Commonand
) b2 n5 B9 m' U. \Differential-Mode Components for
% ?+ a' f! j3 d9 J: w! [ o( KDiagnostic Purposes 396- N$ R/ F0 j# u* v) {
6.3 Power Supplies 401
# _( Q, U* z- V! v6.3.1 Linear Power Supplies 405
$ g6 G1 I5 C1 y6 Q5 ?9 V! _/ P6.3.2 Switched-Mode Power Supplies (SMPS) 406- v1 J- J" p* u. F, G& F2 E/ H
6.3.3 Effect of Power Supply Components on Conducted
4 }. p- R& o! ^; _- z, ^# i! O6 O5 VEmissions 409
0 J3 {- a( g/ u' q1 k8 U6.4 Power Supply and Filter Placement 414
# ^6 T" w: U. u0 e: a6.5 Conducted Susceptibility 416
% E+ J5 L- j$ e7 K) u0 A$ pProblems 416
" D4 e M5 J- h2 p2 V- ~/ S& gReferences 419
% M# X; Z+ k8 c7 Antennas 421$ |) c( ~8 M5 F- W5 H- O$ R% i+ Y
7.1 Elemental Dipole Antennas 421
' Z" K9 F( u+ e; H4 ]7.1.1 The Electric (Hertzian) Dipole 422
4 Y4 P0 t v! D7.1.2 The Magnetic Dipole (Loop) 426$ Q" d3 q6 i, q5 L) {+ C
7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429
2 w( i9 y- e2 `2 o+ x7.3 Antenna Arrays 440
& {2 {! r2 g: P9 a9 y: t& p7.4 Characterization of Antennas 448# m% P' p/ ~! Z4 C
7.4.1 Directivity and Gain 448
' @- \. ` ?$ m* \7.4.2 Effective Aperture 454' Q4 R2 j7 A3 M! A7 }
7.4.3 Antenna Factor 456$ ~5 A: ?4 D( O! R* d
7.4.4 Effects of Balancing and Baluns 460
/ f' O( B" V7 U+ i0 Z7.4.5 Impedance Matching and the Use of pads 463% A" |8 n- i& V8 Y! Y
7.5 The Friis Transmission Equation 4669 h6 e1 \2 M: x0 K
7.6 Effects of Reflections 4707 y4 z* f" a3 Q5 \2 \: v* w2 p
7.6.1 The Method of Images 470
# ?* d2 v6 D/ M" Y, Hx CONTENTS
( y/ d2 v4 t' r/ C7.6.2 Normal Incidence of Uniform Plane Waves on Plane,2 m6 t6 G' f, F9 b4 X& ?, u
Material Boundaries 4702 x( |6 c" r: G( [! q
7.6.3 Multipath Effects 479
6 m! H1 H6 z7 k" T0 I$ v s7.7 Broadband Measurment Antennas 486! k7 {& t9 E2 i- S* @- c
7.7.1 The Biconical Antenna 487) T% k2 h: `$ _7 K8 H! H7 [
7.7.2 The Log-Periodic Antenna 490
2 o/ K( X1 A4 VProblems 494; @+ w2 X. G2 w6 a$ a0 S( A
References 501
. S4 W9 T6 j+ ~. p( C8 Radiated Emissions and Susceptibility 503
$ t# A0 z8 `5 J4 t! i1 E) H8.1 Simple Emission Models for Wires and PCB Lands 504
% S6 @0 L/ ^5 [$ z8.1.1 Differential-Mode versus Common-Mode Currents 5049 w- X1 S5 B4 p( V' k- `
8.1.2 Differential-Mode Current Emission Model 509
2 ^' U0 X3 X; c; [. r1 |: p8 T0 s8 a5 ^8.1.3 Common-Mode Current Emission Model 5148 {/ w u0 U# X) ^
8.1.4 Current Probes 518
3 K+ A) } }6 P9 Z6 b8.1.5 Experimental Results 523
4 h" K2 Q) s$ E; O8.2 Simple Susceptibility Models for Wires and PCB Lands 533. A. \2 J" A' x W d; k
8.2.1 Experimental Results 5440 ?9 R3 O( L/ ^3 ]
8.2.2 Shielded Cables and SuRFace Transfer Impedance 5463 O1 G4 s; ?( w+ A, D
Problems 5506 A9 \7 ]/ ~1 ~' L$ p G+ s
References 556
# @% Z( g- y1 V" |6 G/ W0 O5 h9 Crosstalk 559
" c' S& Q+ B( l# }6 D/ `9.1 Three-Conductor Transmission Lines and Crosstalk 560
5 } N- P# ?. N& ~9.2 The Transmission-Line Equations for Lossless Lines 564
% n6 V2 S! [6 q" d M: P9.3 The Per-Unit-Length Parameters 567
( w7 a. i9 X8 O% z' W* `9.3.1 Homogeneous versus Inhomogeneous Media 568$ M0 R$ W% [0 h6 F% E
9.3.2 Wide-Separation Approximations for Wires 570
1 u* \# n# h) t% w8 a2 h9 W9.3.3 Numerical Methods for Other Structures 5807 T# ~ D( W6 M+ P3 L d
9.3.3.1 Wires with Dielectric Insulations$ L8 l$ [5 g- n, f* Z2 b
(Ribbon Cables) 586
# d& l& w7 V( o# g+ l9.3.3.2 Rectangular Cross-Section Conductors
; T1 B6 H+ j& k% j, t) x(PCB Lands) 590
& P/ Q4 b: X2 `4 G, h! Y9.4 The Inductive–Capacitive Coupling Approximate Model 5954 F. h2 v4 K% R" ~. l3 R
9.4.1 Frequency-Domain Inductive-Capacitive Coupling6 Z% X3 T- g% @8 a
Model 599
* H! ^( d4 [+ M: R. w7 t& R% d9.4.1.1 Inclusion of Losses: Common-Impedance, s* F" M! y4 W* ?+ W8 r
Coupling 601/ N+ }, [* d. j6 x( r" d; T2 q
9.4.1.2 Experimental Results 604
, x: {' f7 Q- S& p4 f( C9.4.2 Time-Domain Inductive–Capacitive Coupling Model 6127 l5 F1 W- F# a
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616; z8 A5 m, `/ X" r
9.4.2.2 Experimental Results 617
6 ~2 C, u0 {, g: u1 WCONTENTS xi
' u4 ^: B4 Z& @7 D9.5 Lumped-Circuit Approximate Models 6246 K: Z8 t+ R0 y3 p& u }
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 6242 Y- o; E) j1 ]
9.6.1 Computed versus Experimental Results for Wires 633
/ A0 t6 X9 e5 }9 _9.6.2 Computed versus Experimental Results for PCBs 640! b% Y/ `- K5 n( c% o7 |. k2 w1 y
9.7 Shielded Wires 6476 v0 H& e' h- ?( U
9.7.1 Per-Unit-Length Parameters 648
8 {: a7 k9 M ?- `9.7.2 Inductive and Capacitive Coupling 651
7 _( \" p' Z$ `) c; d$ v/ _9.7.3 Effect of Shield Grounding 658
& x* v* F+ U0 p9.7.4 Effect of Pigtails 667
- f8 s$ V: A8 P5 `9.7.5 Effects of Multiple Shields 669
1 s/ t4 M% w0 C9.7.6 MTL Model Predictions 675/ s2 X, R) r7 I+ ^
9.8 Twisted Wires 677! {9 v8 D0 d+ U: u0 Y$ R9 ^
9.8.1 Per-Unit-Length Parameters 681- [$ N: f0 T% ]8 {- e
9.8.2 Inductive and Capacitive Coupling 6851 }' N9 C# o' x( Z$ G0 `
9.8.3 Effects of Twist 689& S8 ~! ^# ^; @5 v8 N. F
9.8.4 Effects of Balancing 698+ j: Z: N- K5 V* }- J; c
Problems 701. G7 g! ?% L2 g/ J6 ?) Y- a
References 710
6 B- a, w9 R1 f( Y* d2 W10 Shielding 713
% s- C# J, o" L( R4 }10.1 Shielding Effectiveness 718
' W" i9 j4 }( C4 ^- z$ d10.2 Shielding Effectiveness: Far-Field Sources 721
! e( L/ e( e& f10.2.1 Exact Solution 721
6 S0 B& G0 l7 Y* a- }( q10.2.2 Approximate Solution 725
% ~$ [, w7 \: f: F( M) K/ f10.2.2.1 Reflection Loss 725
8 }- a0 d# a9 z! n10.2.2.2 Absorption Loss 728
/ }1 W7 \8 O* a3 T$ @! P10.2.2.3 Multiple-Reflection Loss 729
# l8 h4 I# o3 a$ p10.2.2.4 Total Loss 7316 N1 T9 @! `9 ]8 W& I1 a# H% N. k
10.3 Shielding Effectiveness: Near-Field Sources 735
6 |4 n8 l. K |5 i10.3.1 Near Field versus Far Field 736( Y1 t9 v' _) y4 N
10.3.2 Electric Sources 740' V2 L. o$ a" w1 }( p$ U/ F
10.3.3 Magnetic Sources 740
' D' Q9 m2 ~# b$ S- b10.4 Low-Frequency, Magnetic Field Shielding 7425 K+ S& [) M6 I- x k' q3 P0 R5 C
10.5 Effect of Apertures 745# ^% A/ k3 w% ]' q" {0 Z
Problems 750- q# |6 z3 m/ n+ N; r! t' S7 @6 {
References 7519 F; E/ d, w: i8 m
11 System Design for EMC 753
# S$ P6 H* U" m11.1 Changing the Way We Think about Electrical Phenomena 7584 W" }! o2 w x& u4 N
11.1.1 Nonideal Behavior of Components and the- C7 [# `& N# m- ^0 h
Hidden Schematic 7582 q' ^6 l! S) H7 ^3 h! E+ U& R* m1 E
11.1.2 “Electrons Do Not Read Schematics” 763
& t, b; K" V1 f5 P# R# |xii CONTENTS
# b# D$ m9 N6 Q; T11.1.3 What Do We Mean by the Term “Shielding”? 766
$ ]/ j$ T0 M* b- C+ }11.2 What Do We Mean by the Term “Ground”? 768/ S8 Z3 X' k! L5 E2 d
11.2.1 Safety Ground 771
7 `. I- V0 j4 o: D4 P" A |9 ?11.2.2 Signal Ground 774
; C' M- z5 N. d( @) X7 G11.2.3 Ground Bounce and Partial Inductance 775
+ G% j8 g6 A1 X: T11.2.3.1 Partial Inductance of Wires 781
! F- ~* m( c- f U/ }11.2.3.2 Partial Inductance of PCB Lands 786
: C& n' ^8 h& R) R y+ {) P* R6 s; ?11.2.4 Currents Return to Their Source on the Paths of Lowest! H8 M/ C9 d. j/ K2 d
Impedance 787
8 }5 p% |; p- l; O11.2.5 Utilizing Mutual Inductance and Image Planes to Force9 Q+ i1 x+ A7 P3 F/ F, ?
Currents to Return on a Desired Path 793
3 m6 J. H2 T. Z11.2.6 Single-Point Grounding, Multipoint Grounding, and
: J! p2 W2 \0 gHybrid Grounding 796
9 Z& n9 Q- ]8 f" J/ E% S11.2.7 Ground Loops and Subsystem Decoupling 802
6 p w+ Q1 c2 \, \11.3 Printed Circuit Board (PCB) Design 805
3 Y& x) i8 o1 L. r11.3.1 Component Selection 8053 _4 j- s8 h" U: V9 c+ h
11.3.2 Component Speed and Placement 806
" n8 h7 [0 v9 L7 [11.3.3 Cable I/O Placement and Filtering 8085 _' k( y& c. n' _$ b0 d
11.3.4 The Important Ground Grid 810# y8 O" r' A6 h+ Z8 O+ G
11.3.5 Power Distribution and Decoupling Capacitors 812
( y. X2 h& V. H) Z' [11.3.6 Reduction of Loop Areas 8225 Q: W5 @/ e, x+ k
11.3.7 Mixed-Signal PCB Partitioning 823! `1 T, {9 \2 O9 L1 H& @
11.4 System Configuration and Design 8272 {5 `) }; d( h* L6 [
11.4.1 System Enclosures 827
4 H# X* K6 `7 N+ P11.4.2 Power Line Filter Placement 828
+ v- T. k$ T# S2 R3 |" ?. p: n11.4.3 Interconnection and Number of Printed
$ Z% x6 J D& H/ j3 ECircuit Boards 829
4 C# i/ ]3 N. t; w# W2 g11.4.4 Internal Cable Routing and Connector Placement 831
, `3 T5 ^4 Y6 y+ N11.4.5 PCB and Subsystem Placement 832
7 q# E, i. ]: @" U- \+ b11.4.6 PCB and Subsystem Decoupling 8320 M2 D/ ~! l1 X- I9 r
11.4.7 Motor Noise Suppression 832
( t; j( c( @8 y+ l' w! D8 Y11.4.8 Electrostatic Discharge (ESD) 834) t- ^, w) G. S; k2 D
11.5 Diagnostic Tools 847; `& s4 s! l2 x; f6 ?
11.5.1 The concept of Dominant Effect in the Diagnosis of' {6 a* d R1 L2 L1 w$ F
EMC Problems 850
) ]" P u% j' e1 j& N N, a' k0 IProblem 856
& n C1 Q6 C; a; u" GReferences 857
" P- W. u, c% dAppendix A The Phasor Solution Method 859
" @) s) N; n) d$ O# m3 d: k ^A.1 Solving Differential Equations for Their Sinusoidal,
( j2 n, i' X8 d. \Steady-State Solution 8590 N' g8 F: ` ?6 K1 F
CONTENTS xiii
5 U) r7 V( v+ j/ c- u' ]A.2 Solving Electric Circuits for Their Sinusoidal,
- V0 b$ S! q+ y/ I% X7 U5 [2 i3 D$ ESteady-State Response 8630 c% A% S" X( k. p7 U
Problems 867! H1 b% \) C6 P7 g; M; ~
References 869
! C3 u6 m+ m: ]' q8 u0 mAppendix B The Electromagnetic Field Equations and Waves 871) n: T, ]- J% D. X
B.1 Vector Analysis 872
( i" M. m9 G6 `( R, ]B.2 Maxwell’s Equations 881, W1 U' p1 q7 S2 k3 u) p4 [6 q
B.2.1 Faraday’s Law 881
1 F8 I+ m, `6 ~' R1 Q SB.2.2 Ampere’s Law 892% |/ X7 w7 K/ V' Y' G$ d) ^4 z0 {
B.2.3 Gauss’ Laws 898
5 X& L4 K8 e1 O4 PB.2.4 Conservation of Charge 900( E' H, L/ B+ s) U9 g* F
B.2.5 Constitutive Parameters of the Medium 900* i" p+ h9 g! O+ e8 w7 q0 S
B.3 Boundary Conditions 902
; ~( H0 b$ @6 u; Q8 t2 RB.4 Sinusoidal Steady State 9073 c/ k9 A* h! \$ E
B.5 Power Flow 909/ Q8 h1 F; O! J6 a1 t$ e$ A
B.6 Uniform Plane Waves 909
- K; U6 |! L) m$ ?. I$ o. CB.6.1 Lossless Media 912
" K, `. t! c% E% l! N/ LB.6.2 Lossy Media 9185 W' g5 L! z5 u. m
B.6.3 Power Flow 922
# `7 y' g9 [: E8 s e& Y0 \6 cB.6.4 Conductors versus Dielectrics 923
! d9 g. K# @; D( Z. mB.6.5 Skin Depth 925
' k9 Q$ O. B( y: @) v, F- ]5 pB.7 Static (DC) Electromagnetic Field Relations—
( M* p1 U. o3 y5 {5 e( f( \a Special Case 927/ m$ l* ~6 V' j0 {
B.7.1 Maxwell’s Equations for Static (DC) Fields 927
9 `/ K0 E! L% LB.7.1.1 Range of Applicability for
+ E. v; i% r, SLow-Frequency Fields 928 K( }& r( k5 v8 i! z0 F
B.7.2 Two-Dimensional Fields and Laplace’s. c: }- U1 @( q2 l* ^7 o, i: Q3 M
Equation 928' a1 |* j$ D$ {$ P$ _: M
Problems 9304 z% ?! R0 A. q6 M3 ~+ N) f2 U
References 939
1 i* f: v" A8 g* o5 c8 c# k5 G% Z. wAppendix C Computer Codes for Calculating the Per-Unit-Length, C1 p, k# B" N+ o1 `
(PUL) Parameters and Crosstalk of Multiconductor( E3 d4 b2 M# M
Transmission Lines 941
9 Z! ~0 S. o+ L0 ?: hC.1 WIDESEP.FOR for Computing the PUL
5 F( D8 ^ q! J( M( u$ `: A# z+ w: QParameter Matrices of Widely Spaced Wires 9425 T+ o% G8 O/ |( v4 U H
C.2 RIBBON.FOR for Computing the PUL Parameter
4 n9 v# _. f1 I7 g; D- SMatrices of Ribbon Cables 947
, b) Q4 G+ Z% C8 J/ lC.3 PCB.FOR for Computing the PUL Parameter
/ l) v1 R x( d5 G7 `# n+ CMatrices of Printed Circuit Boards 949
5 ]! e y- k1 ^* yxiv CONTENTS
9 M# ?. S& H$ G0 n9 HC.4 MSTRP.FOR for Computing the PUL Parameter
% O" N0 r- V w& }Matrices of Coupled Microstrip Lines 951
1 l- `, _# k2 S2 K1 ~C.5 STRPLINE.FOR for Computing the PUL
! _1 o% V8 A& E% k0 ^Parameter Matrices of Coupled Striplines 952$ G! W$ k+ n2 c* e
C.6 SPICEMTL.FOR for Computing a SPICE7 E P, |1 D8 i
(PSPICE) Subcircuit Model of a Lossless,; N' z5 g" Z1 u' V% W3 M' Q
Multiconductor Transmission Line 954' A: o* L! s" T1 O+ a
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE)" V+ b1 y. j5 {, V& M
Subcircuit of a Lumped-Pi Model of a Lossless,
* W9 L4 o& `! g- m; ?8 aMulticonductor Transmission Line 956% k: L% Y: z& }2 t+ c
Appendix D A SPICE (PSPICE) Tutorial 959/ n. z0 @5 g5 K% f. U& J
D.1 Creating the SPICE or PSPICE Program 960) z1 r; c5 e, \, T/ }7 |: S
D.2 Circuit Description 961
: y1 _* A% o; V8 j6 v8 qD.3 Execution Statements 966
- f0 S3 ~0 V$ T; z+ @D.4 Output Statements 968
. h; k6 E: c. Q+ F8 s0 ED.5 Examples 970
9 N) f0 I7 n; E3 R8 j+ M; @References 974. `( O( Q" T" l$ v
Index 975
; F/ q# n2 g" {% J' y
: Y8 i) R" b" U* O |
|