|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1.电磁兼容导论英文版4 @! a5 ~8 d4 O
《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。; h; P) s: E( V6 D7 `# s
本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。
$ [. O/ s0 u$ V/ {1 ?& {- H- u& q+ q2 O0 E7 i! {9 ^; q* v8 O1 e) G
Contents, |" @" y# e1 K# v" b
Preface xvii
2 b n, N" d: d) o: u% B b1 Introduction to Electromagnetic Compatibility (EMC) 1, U' z3 l6 l ]. ]5 v
1.1 Aspects of EMC 3
+ k6 ]1 u# {, B/ h3 O7 C: P* H' \1.2 History of EMC 10
9 Y* K5 m2 J: V. |1.3 Examples 12
$ r( r! F& T0 t% u1.4 Electrical Dimensions and Waves 144 z- ?3 l/ p9 v5 v. E" p
1.5 Decibels and Common EMC Units 23" s' S) X* b! R6 i& o
1.5.1 Power Loss in Cables 32
0 b% Y5 ~, g `( |+ h( }( _7 b1.5.2 Signal Source Specification 37
2 h4 U9 S5 b" [Problems 43
/ W# i' C# p$ G7 S: k' lReferences 48
8 j' S' J2 c' f9 Q2 EMC Requirements for Electronic Systems 49$ j8 r. Z5 u2 k* w
2.1 Governmental Requirements 507 `- v+ k. V! U+ |
2.1.1 Requirements for Commercial Products Marketed) E- z: _5 d# }' U+ i4 j7 r; v# E
in the United States 505 s2 U, B9 B \4 ~, x4 r, m! B
2.1.2 Requirements for Commercial Products Marketed
7 J/ ]: @! v* B7 g' Woutside the United States 55 I) o, B4 s! |9 n
2.1.3 Requirements for Military Products Marketed in the. `( P: z4 \' [0 ], K) k
United States 60
( }2 L* _5 l+ {2.1.4 Measurement of Emissions for Verification of Compliance 624 `( v9 N' g( B) w' D
2.1.4.1 Radiated Emissions 64# _) `' s v7 N& k% x+ ~! i
2.1.4.2 Conducted Emissions 67, e/ O3 Y* {4 Q2 O" P8 p+ ]
2.1.5 Typical Product Emissions 72
7 C3 u D4 Y1 j% M7 U) q7 l8 \. t2.1.6 A Simple Example to Illustrate the Difficulty in Meeting
' l0 d# a) r& M% c( Gthe Regulatory Limits 78
8 q9 @4 s& C) F8 B3 u/ X, uvii2 c( x& M( {0 H# y
2.2 Additional Product Requirements 791 H! B- E4 @* Z0 ]. p. h3 N
2.2.1 Radiated Susceptibility (Immunity) 81
8 v' [5 D# r3 n, y& {2.2.2 Conducted Susceptibility (Immunity) 81" ]4 m/ W4 v4 V0 q# N/ C% Z
2.2.3 Electrostatic Discharge (ESD) 81
2 d M# R$ B% E# w6 E$ d( N2.2.4 Requirements for Commercial Aircraft 82/ M" ~- q6 B- `. i
2.2.5 Requirements for Commercial Vehicles 82
5 i8 D' q( C% E" w7 }6 N2.3 Design Constraints for Products 82
: [1 Q, H7 C( ]$ w" ~2.4 Advantages of EMC Design 84
: ~+ q: k- M+ f4 C* V& V4 {$ eProblems 866 r3 }7 G/ ~3 b6 g. \3 x
References 89
1 g! P; E2 v D* p/ B7 c- R7 P3 Signal Spectra—the Relationship between the Time Domain and9 {2 S9 j" n! |+ W1 g- v
the Frequency Domain 91
$ c9 y6 j! O) k+ c+ B' ~: L3.1 Periodic Signals 91
. A( t) S2 s0 E, s9 W( h2 ^3.1.1 The Fourier Series Representation of Periodic Signals 94( b0 W. I3 Z7 ?
3.1.2 Response of Linear Systems to Periodic Input Signals 104/ n6 a' K$ O/ x, t7 _4 d
3.1.3 Important Computational Techniques 111
2 v# t7 P. W1 C* P% G; I, R' v2 p3 Y3.2 Spectra of Digital Waveforms 118
& s% v5 ?' d1 j# y3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
% }$ V5 i3 _7 D3 m: v0 I0 A6 r& n+ c3.2.2 Spectral Bounds for Trapezoidal Waveforms 122
, j1 U( e9 [+ F2 H' r9 ~3.2.2.1 Effect of Rise/Falltime on Spectral Content 123
, X9 |* d6 _2 p* `6 C3.2.2.2 Bandwidth of Digital Waveforms 132) b5 A& J) a6 w
3.2.2.3 Effect of Repetition Rate and Duty Cycle 136
9 K* l' X8 ^- K, r8 v. E- g* Q3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
0 \* [$ h& C6 x& _1 Q3.2.3 Use of Spectral Bounds in Computing Bounds on the
1 }# O$ H* i3 DOutput Spectrum of a Linear System 1401 ~' m5 Z2 x) u# y
3.3 Spectrum Analyzers 142
1 h; y% X" ], S, |3.3.1 Basic Principles 142
: {, T5 R9 Q4 L6 w9 J t2 G3.3.2 Peak versus Quasi-Peak versus Average 1469 b# b9 U) K" i/ Q0 k/ E( c
3 ^) [' E) Q- d# b# W' o! L' ?3 {
3.4 Representation of Nonperiodic Waveforms 1480 v$ y; y- v' V! E) L8 U, i
3.4.1 The Fourier Transform 148& x* r! k4 T, v& K
3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
, A" [ w3 o1 |% |9 G0 G. l: L3.5 Representation of Random (Data) Signals 151( q* j1 M3 B2 B/ S& @4 ~
3.6 Use of SPICE (Pspice) In Fourier Analysis 155
, Q0 e, i" j+ I! ^- z) L @Problems 167" k# t3 ?8 }4 |2 ]' f6 S* O
References 175
9 Z y5 R8 d% g4 Transmission Lines and Signal Integrity 177
0 Q% L7 W: q( s! V/ i% i8 E4.1 The Transmission-Line Equations 181
6 T5 X. d( W8 h; D4.2 The Per-Unit-Length Parameters 184) M' ?+ i+ w8 l' d5 m
4.2.1 Wire-Type Structures 186' a( }; \& d6 w2 l
viii CONTENTS
; M* ?& H8 |# x9 L5 x4.2.2 Printed Circuit Board (PCB) Structures 1996 \, L. m! k V) a0 a! C/ t0 f
4.3 The Time-Domain Solution 204" X3 k3 [9 X7 ~8 s- J& S5 D0 k* _. v( [
v: G6 P& T$ j7 L3 v' n3 i4.3.1 Graphical Solutions 204' j! {( H) f- x1 i4 n" `
4.3.2 The SPICE Model 218
' ]. k! v( @$ z$ r i& C4.4 High-Speed Digital Interconnects and Signal Integrity 2253 o8 z0 \1 k( a
4.4.1 Effect of Terminations on the Line Waveforms 230
& ~! |+ ^$ G& P5 W5 d x4.4.1.1 Effect of Capacitive Terminations 233/ n4 O+ c7 K0 D# u: Q8 U' V' n
4.4.1.2 Effect of Inductive Terminations 236( o: c) Q! Z2 g5 m0 {
4.4.2 Matching Schemes for Signal Integrity 238
* I P' V3 u: q2 _4.4.3 When Does the Line Not Matter, i.e., When is Matching
: u7 c) e, x9 T! \+ f# fNot Required? 244
/ A+ ~+ p: h) [4.4.4 Effects of Line Discontinuities 2474 u4 M. s% T% g5 q
4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260& r4 j, H+ e; c) r+ b( b" ^
4.5.1 Voltage and Current as Functions of Position 261( ^) P2 z: k. x3 J2 N! ]
4.5.2 Power Flow 269$ W. _5 S1 A& c! G' ]/ Y. _4 ~
4.5.3 Inclusion of Losses 270
" H0 [% ^5 T# |0 \- e- ]6 _. H- e5 [0 U4.5.4 Effect of Losses on Signal Integrity 273* z0 b* Y5 F5 n, V( p
4.6 Lumped-Circuit Approximate Models 283
/ L0 k. S$ g3 ]. i9 N+ kProblems 287
6 L4 }9 Z! A6 _/ rReferences 297
! m8 ^1 F0 E- N* }( w" `* e5 Nonideal Behavior of Components 2991 E* W! u- G" i+ t
5.1 Wires 300- i% ~# H8 c' V) h
5.1.1 Resistance and Internal Inductance of Wires 304. h6 w, C! j1 F- g# D, d+ D, }- [' \1 `( k
5.1.2 External Inductance and Capacitance of Parallel Wires 308
1 ^1 m& m! z! K5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
% T0 ]. Y" u* A4 Q5.2 Printed Circuit Board (PCB) Lands 3120 I' P# w B5 @, q- E; d% D( [6 I1 j) r
5.3 Effect of Component Leads 315
. n( T+ U% X) X: Y5 z8 {: z5.4 Resistors 317
7 D8 y1 l: [* d3 w! i4 t5.5 Capacitors 3251 S7 y. H0 a# u3 Q i! i3 q' W8 s
5.6 Inductors 3361 X, G$ \1 [) l' Q4 B; S
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340* \7 R" K l4 y
5.8 Ferrite Beads 343
2 `; F/ {4 r2 C$ r5.9 Common-Mode Chokes 346
" P+ p) A/ \7 t# l" x, |5.10 Electromechanical Devices 352
- C; i) L& p- K5.10.1 DC Motors 3521 Z% F, V2 r I4 l( e1 R
5.10.2 Stepper Motors 3556 y# V4 i7 g6 U
5.10.3 AC Motors 355- Y. e" E$ X" s: S& u% z) A
5.10.4 Solenoids 356
4 \. I8 ^# z1 k! S. w, F5 {5.11 Digital Circuit Devices 357$ ^' t: n( |- a6 U7 w1 Q/ f4 q
5.12 Effect of Component Variability 358
) b6 n2 j! a! M+ _/ V: a5.13 Mechanical Switches 359
; N" ^* P% Q# l2 O1 f% h5.13.1 Arcing at Switch Contacts 360
' _& J* R4 }" z4 a# C' [CONTENTS ix- a( f% R) P0 R
5.13.2 The Showering Arc 363
7 _# l: \6 x# w: { V5.13.3 Arc Suppression 364
/ T2 Q+ F9 T$ C) `* L& qProblems 369
+ @( ~$ ~1 {+ OReferences 375" r4 F8 J p+ @6 d9 ^8 u
6 Conducted Emissions and Susceptibility 377) ?) S: ]8 m7 a/ e ?
6.1 Measurement of Conducted Emissions 378
* u( G) z: U Q! S6.1.1 The Line Impedance Stabilization Network (LISN) 379
) K. i- }1 r( E3 w @6.1.2 Common- and Differential-Mode Currents Again 381
1 g Z' h4 M9 c6.2 Power Supply Filters 385
. c7 g, n0 u' y6.2.1 Basic Properties of Filters 3856 ?0 p# e' `# k$ z/ \
6.2.2 A Generic Power Supply Filter Topology 3889 S* ~( q* X* k q. `
6.2.3 Effect of Filter Elements on Common- and
& e, g8 } R5 t9 V5 ZDifferential-Mode Currents 390
- F+ a: J9 L. y* {9 R& {6.2.4 Separation of Conducted Emissions into Commonand' }4 M3 v, _* ?
Differential-Mode Components for; R3 z a0 |8 |2 p9 N
Diagnostic Purposes 3969 U! X' Z2 _( m+ @
6.3 Power Supplies 401
q( X3 @. D2 q0 N2 o6.3.1 Linear Power Supplies 405
2 Y0 C& g& E1 ^ m4 k+ x+ S. A6.3.2 Switched-Mode Power Supplies (SMPS) 4062 Y1 [6 m6 `7 s1 T ?5 g
6.3.3 Effect of Power Supply Components on Conducted
7 C4 ]. G1 d& x" q/ K. xEmissions 409) T9 k3 I, j4 g; c! F+ q
6.4 Power Supply and Filter Placement 414
" i2 @. r8 r* s; b6.5 Conducted Susceptibility 416
8 Q3 y, ?# K! VProblems 416
% c: b: l' i/ X' H& n5 t7 U) cReferences 4195 r+ w, {, g. W2 o, G+ g
7 Antennas 4212 [+ l6 h5 g# |& X
7.1 Elemental Dipole Antennas 421
3 H0 X2 _5 [8 P7 a7.1.1 The Electric (Hertzian) Dipole 422
5 Z% U1 j9 ^, P$ `+ E) G- u" K' d( J7.1.2 The Magnetic Dipole (Loop) 426
; U2 _; d5 H6 b+ u) U" ?* m7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429% ]2 l( T3 O: {2 \
7.3 Antenna Arrays 440
" ]1 H9 C m6 B9 X6 q$ w7.4 Characterization of Antennas 448
4 [( O. Y* k1 g# h' G7 n7.4.1 Directivity and Gain 448
" D( |1 y1 n9 ]. G2 f1 M7.4.2 Effective Aperture 454
8 Y8 f+ @! l' H1 ^, |4 Y$ Q7.4.3 Antenna Factor 4567 }7 k. n- A+ M. ~9 A2 h- m
7.4.4 Effects of Balancing and Baluns 460. l0 b+ _. `- @ x' }6 e
7.4.5 Impedance Matching and the Use of pads 463) ?* u6 G7 E) l( K% Z+ ^& F( J# x
7.5 The Friis Transmission Equation 466 n1 o% A( M3 v' }8 j
7.6 Effects of Reflections 4704 {0 U% C. L$ \8 C- s4 _/ X! s6 K
7.6.1 The Method of Images 470
! s8 n+ y! U6 `# ?3 H: E0 @0 Ex CONTENTS
- | c( U3 d; ]% z2 a: l6 k7.6.2 Normal Incidence of Uniform Plane Waves on Plane,. P/ ^# I9 n) m" c% O# E' m( W2 Z
Material Boundaries 4705 X d& d/ k$ j
7.6.3 Multipath Effects 479
2 f9 ~4 Y0 t: K. o% A- b7.7 Broadband Measurment Antennas 486
5 P: a8 V1 v5 K7.7.1 The Biconical Antenna 487
9 `7 e7 {' V# J2 @7.7.2 The Log-Periodic Antenna 490; ]/ U0 y' I ]
Problems 494
* r/ _# |; m+ m6 P" _4 j. VReferences 501
; ^) X4 m( w. f8 Radiated Emissions and Susceptibility 503% l, i m& K0 |. M% E9 S
8.1 Simple Emission Models for Wires and PCB Lands 504
2 N, Y. B1 z8 |3 E" {& x% s8.1.1 Differential-Mode versus Common-Mode Currents 504
2 M( H; d% c& |- P/ ^7 l( @8.1.2 Differential-Mode Current Emission Model 5094 B5 |5 E- p$ q Y+ h' \$ y
8.1.3 Common-Mode Current Emission Model 514" x( d' {6 }: \% r' L1 `6 S
8.1.4 Current Probes 5184 c5 g5 p3 f3 {- ^) x" v5 H! t" e5 I
8.1.5 Experimental Results 5230 y" |% l A% v$ B8 i( @/ R( D" V
8.2 Simple Susceptibility Models for Wires and PCB Lands 533
6 h+ s0 M5 ^7 s2 U" l$ l, c* A8.2.1 Experimental Results 544
7 q6 p6 O8 d, }+ U8.2.2 Shielded Cables and SuRFace Transfer Impedance 546
& w/ C0 I5 B |* J* m7 u7 `Problems 550
4 u! _: f, i8 Q& z9 B1 Y9 z) Y: BReferences 556
0 _: H+ v% ~; v# m9 Crosstalk 559
0 o% \* s- {0 s1 t2 K2 K9.1 Three-Conductor Transmission Lines and Crosstalk 560
: a* R. p% l4 P5 b" `/ W: S' q9.2 The Transmission-Line Equations for Lossless Lines 5645 r2 u0 x0 A- M0 k
9.3 The Per-Unit-Length Parameters 567# [6 _- T$ u2 w' L2 n
9.3.1 Homogeneous versus Inhomogeneous Media 568# i# C" u7 y6 t
9.3.2 Wide-Separation Approximations for Wires 5706 U+ k0 n9 i/ M! P; c8 W
9.3.3 Numerical Methods for Other Structures 580: U. \' \% W# Q+ I3 U
9.3.3.1 Wires with Dielectric Insulations* S& q1 E" R' ^2 M; S6 `$ |
(Ribbon Cables) 586
/ l" i$ J2 _, n1 X9.3.3.2 Rectangular Cross-Section Conductors
. C% q7 ]& B g8 F1 M. z(PCB Lands) 590
( [$ ? A& k1 G5 b( V0 Z9.4 The Inductive–Capacitive Coupling Approximate Model 595+ J, d$ C' [% Z6 j1 m
9.4.1 Frequency-Domain Inductive-Capacitive Coupling
F( Y `9 u1 o) I3 x' ^Model 599
+ \& F- T3 {& g" G9.4.1.1 Inclusion of Losses: Common-Impedance" I1 z4 k# V* d, h2 F" C
Coupling 601
1 s& b* u+ R* N; R: r2 i" \0 u9.4.1.2 Experimental Results 604# ?8 A2 k) p# H
9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612- q. y- b4 d1 C6 ~. s" f1 u, G
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616 X' v3 L/ Y+ c1 p0 j7 c5 ]4 }
9.4.2.2 Experimental Results 617 \% [( _0 h5 O" i. Z: T
CONTENTS xi
9 {9 c6 l) o4 s, V8 M/ M9.5 Lumped-Circuit Approximate Models 624
# {1 j; B+ E, b3 S+ e4 W) C9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 6241 M0 `1 B2 k( S9 _; B
9.6.1 Computed versus Experimental Results for Wires 6333 ?- h" Z# f( E9 O4 d, s" o1 @) T
9.6.2 Computed versus Experimental Results for PCBs 640" Z, `2 q, C/ r) z% ^* b8 B5 z
9.7 Shielded Wires 647
b P- F0 N' H4 g P9.7.1 Per-Unit-Length Parameters 648
2 D, ]% X3 w, x% _7 ^3 B9.7.2 Inductive and Capacitive Coupling 6517 n* V" M1 \& M4 g% g$ P+ b
9.7.3 Effect of Shield Grounding 658
2 X5 E# p# ^) D4 Z9.7.4 Effect of Pigtails 667' \7 n+ k ?$ ?' b! j1 y0 N
9.7.5 Effects of Multiple Shields 6699 y6 [% d5 G& H/ ~' s6 b
9.7.6 MTL Model Predictions 675* o3 N( N3 @/ [
9.8 Twisted Wires 677
# r [" X, w3 [% I6 m) n d9.8.1 Per-Unit-Length Parameters 6819 e, b# C& j) S) `* C- \1 s3 F
9.8.2 Inductive and Capacitive Coupling 6852 D7 b; g' g: j8 [& X# j! z
9.8.3 Effects of Twist 689
6 L3 b: B* s! W, D9.8.4 Effects of Balancing 6980 A. j2 A: U+ e; s* ]+ d2 z+ a
Problems 701
2 m p# ?$ ?5 q6 w# z" T; t2 RReferences 710
; Z8 B/ l; K. H, g* b( Y10 Shielding 713
4 h0 ?% t d; f' Q5 ^; x3 n5 N# M10.1 Shielding Effectiveness 718
$ Q* D- A- d3 N+ }6 `10.2 Shielding Effectiveness: Far-Field Sources 721
3 A) q8 Q( q. G, p10.2.1 Exact Solution 721- P( P6 l; D9 v% I3 f7 C; T; R
10.2.2 Approximate Solution 725
/ O. O `5 `1 W5 Q' r0 ?10.2.2.1 Reflection Loss 725' j2 e: X& `8 [2 H0 L7 f0 y" [' e
10.2.2.2 Absorption Loss 728
( N3 U3 H+ ] |) y' k$ e8 [/ T10.2.2.3 Multiple-Reflection Loss 729
' d+ m+ Q5 g3 ?( U; p10.2.2.4 Total Loss 731* V: L- F) {# g$ h) h6 G4 m m" ^
10.3 Shielding Effectiveness: Near-Field Sources 735
% n- E) j2 k* R* V! C10.3.1 Near Field versus Far Field 736
: g& s# {. F8 E10.3.2 Electric Sources 740$ S0 L% ]: f$ [; b% G9 I+ G6 ]
10.3.3 Magnetic Sources 740
4 x2 Q6 W! o7 p: S" J10.4 Low-Frequency, Magnetic Field Shielding 7427 T( ^% h5 q1 S% ^, b) d, W, S
10.5 Effect of Apertures 7459 Q8 y! F0 H! J L# l% i, X
Problems 750! h. e- G( s- j" }
References 751
- ~- v5 \! B) a+ `( c# @11 System Design for EMC 753% m& m# K# p' e
11.1 Changing the Way We Think about Electrical Phenomena 758/ R% |( ]" k% f" k/ p
11.1.1 Nonideal Behavior of Components and the
2 D4 w' F, u& z8 B& e% ^Hidden Schematic 7589 B) Z4 I$ ~' e5 F- [0 v1 T
11.1.2 “Electrons Do Not Read Schematics” 763
7 L: a0 L% g# U0 J& Hxii CONTENTS/ _% }4 Z p5 X! `* z7 s, v. L
11.1.3 What Do We Mean by the Term “Shielding”? 766' H2 E& I5 o# ^. Q2 @
11.2 What Do We Mean by the Term “Ground”? 768
( r. d! q4 z& @1 C3 V11.2.1 Safety Ground 771
/ Q4 m0 A: _3 u% X, z5 c* d1 E7 e11.2.2 Signal Ground 774
5 J( A6 ~, C0 Q! A" ^: J0 C3 |11.2.3 Ground Bounce and Partial Inductance 7753 ^0 C& D' I5 I2 m ?1 M
11.2.3.1 Partial Inductance of Wires 781
' \% @: v |3 z8 l8 A11.2.3.2 Partial Inductance of PCB Lands 786
2 Q0 T4 d0 d8 i- r4 v! D& d2 D% t11.2.4 Currents Return to Their Source on the Paths of Lowest v' D% |' E0 D$ o2 A
Impedance 787
1 y( N) x2 e+ Z( w6 u11.2.5 Utilizing Mutual Inductance and Image Planes to Force
. Q N" l7 \0 f+ f9 J3 S& iCurrents to Return on a Desired Path 793
X/ J3 }3 p" N11.2.6 Single-Point Grounding, Multipoint Grounding, and
# V3 F6 ~: b9 J/ VHybrid Grounding 7962 _, q3 i4 e% K4 }
11.2.7 Ground Loops and Subsystem Decoupling 802
0 \: s; `$ q% ~# L11.3 Printed Circuit Board (PCB) Design 805
t! z3 E9 r0 N/ x1 ?2 z+ F11.3.1 Component Selection 805
. O8 t- d3 t, M! U3 q3 x% }11.3.2 Component Speed and Placement 8062 j& H* Z4 a; O- J
11.3.3 Cable I/O Placement and Filtering 808' I5 O! l% e8 s5 x, [; u; Q
11.3.4 The Important Ground Grid 810
1 _+ _: f" s+ g* R( F: M }& M11.3.5 Power Distribution and Decoupling Capacitors 812, p8 m7 `/ B. g$ Q2 L$ ]& \
11.3.6 Reduction of Loop Areas 822; N2 i3 n/ [4 b5 Q1 k; i
11.3.7 Mixed-Signal PCB Partitioning 823
" ]1 \, ?; E- j; F3 G11.4 System Configuration and Design 827
6 C1 q- E0 V0 X11.4.1 System Enclosures 8270 [$ z- e6 H) a4 V# Q
11.4.2 Power Line Filter Placement 828# C$ _- N; H* g1 ~) _& |1 q
11.4.3 Interconnection and Number of Printed
f" K5 Q- @; z. J9 Z# {" cCircuit Boards 829
: @, |: f8 w Q2 p$ U11.4.4 Internal Cable Routing and Connector Placement 8311 j7 w) I; u# }+ w; v
11.4.5 PCB and Subsystem Placement 832
5 N( }4 Z1 U& @5 }4 [) l" M; k11.4.6 PCB and Subsystem Decoupling 832
+ q1 I4 o2 K" ]7 l5 a* ]5 m0 x11.4.7 Motor Noise Suppression 832
2 e; q# J4 I: U2 {- C11.4.8 Electrostatic Discharge (ESD) 8347 N" h4 k2 j) D! N1 S
11.5 Diagnostic Tools 847
4 W6 d8 l2 J- h" K: J6 V( `, p11.5.1 The concept of Dominant Effect in the Diagnosis of0 `) P }3 O% j" |
EMC Problems 850
* n q0 k2 y0 JProblem 856" q* A4 I2 z- g
References 8573 q; L8 J5 Y/ c- U
Appendix A The Phasor Solution Method 859+ r( Y, Q# [+ ]+ S8 ?( v- x; L; }
A.1 Solving Differential Equations for Their Sinusoidal,; f1 i& m0 L) d; }
Steady-State Solution 859
5 Q! \ S. Q7 i* e, I* Y4 yCONTENTS xiii
, m5 A4 ]7 b8 t M3 y |. `" O) {A.2 Solving Electric Circuits for Their Sinusoidal,
4 h" e; l0 l6 p9 O6 t% ]8 eSteady-State Response 863
; |! Z1 n8 ?# N$ MProblems 867+ O8 c0 L8 L/ ^5 Z$ ^+ M# m( y4 w
References 869/ N1 Z3 \1 ^( _- ~5 `, I* D
Appendix B The Electromagnetic Field Equations and Waves 8719 \( Y! u5 `9 ? W% S
B.1 Vector Analysis 872
: r. _- y4 N. cB.2 Maxwell’s Equations 881: U2 T# U3 M- T7 h& A |. c5 d. s* v
B.2.1 Faraday’s Law 881
8 x% N& ~1 o! `9 V& U+ I+ |B.2.2 Ampere’s Law 892' W! \1 X7 f" T4 K4 s
B.2.3 Gauss’ Laws 898 t; i6 Y- f% A% b+ V6 _/ g0 Q
B.2.4 Conservation of Charge 900
$ P) s& g1 j, T: B- h! d3 o9 L8 b; qB.2.5 Constitutive Parameters of the Medium 900
9 t& G$ `. ?5 r1 vB.3 Boundary Conditions 902
|; m7 R0 b7 [0 J) \B.4 Sinusoidal Steady State 907
9 Y' q( S1 _8 j. @B.5 Power Flow 909, _& S; D- I- W( p5 ]
B.6 Uniform Plane Waves 9090 A; d" ~/ \. [ n& c$ r7 g7 ^, k
B.6.1 Lossless Media 9126 z9 A4 P, l- I. G( p1 Q- T2 g( ~
B.6.2 Lossy Media 918; ^# W! q+ L/ O/ K2 K+ y1 \
B.6.3 Power Flow 922
* J$ c& g* ~0 r" Q( ~0 o/ |B.6.4 Conductors versus Dielectrics 923
, T' n& m+ N t' l$ YB.6.5 Skin Depth 925
& p \' o: q3 t3 FB.7 Static (DC) Electromagnetic Field Relations—
( \2 R- ?# ]: B5 s9 b# H0 la Special Case 927, L ]1 }5 y4 Y, s6 y$ @2 G
B.7.1 Maxwell’s Equations for Static (DC) Fields 927
+ r+ V6 G& _ n$ |" FB.7.1.1 Range of Applicability for( v$ D/ P+ G- o0 y/ X6 S, t V
Low-Frequency Fields 928 e; y1 R q2 Z9 {8 ]8 k: ?
B.7.2 Two-Dimensional Fields and Laplace’s0 k. d: K2 P! f
Equation 928' w3 R7 o3 q# z# w5 M5 D2 i
Problems 930
: Z: U4 _. l: d% MReferences 939
1 m. p. h, \( `5 [8 C, oAppendix C Computer Codes for Calculating the Per-Unit-Length4 J6 e6 h: o: y0 \
(PUL) Parameters and Crosstalk of Multiconductor
) a- ?0 E- n, v* {" mTransmission Lines 941
( {6 X8 y6 `$ A9 i7 WC.1 WIDESEP.FOR for Computing the PUL4 w, X. |& u/ A/ e9 q' T6 a0 z7 H
Parameter Matrices of Widely Spaced Wires 9423 w+ C; {; d4 m4 y( G
C.2 RIBBON.FOR for Computing the PUL Parameter' r9 V! ?# B. G6 b9 b1 f# l3 K
Matrices of Ribbon Cables 9477 }: q' f9 Q6 h, n, J8 {) S
C.3 PCB.FOR for Computing the PUL Parameter
, O% ~9 q+ |* N# }" `Matrices of Printed Circuit Boards 949
3 j$ y7 m& I- s A( Q% i* E% L( j$ lxiv CONTENTS
' A- v( @) r8 y* f8 _8 J: kC.4 MSTRP.FOR for Computing the PUL Parameter
" l( t# m, d/ C j' tMatrices of Coupled Microstrip Lines 951
( g1 c4 C$ e1 o0 ?C.5 STRPLINE.FOR for Computing the PUL
2 I* `# T) Y& }7 y% d% M6 PParameter Matrices of Coupled Striplines 952
3 n$ P6 A. T; P& rC.6 SPICEMTL.FOR for Computing a SPICE
# c$ K) ]" B- S# Z" D; C(PSPICE) Subcircuit Model of a Lossless,
% P \! }- _- ^1 F( k7 tMulticonductor Transmission Line 9548 g. N% z) D8 \- p" s# p, ?
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE) a' l2 H) ^( C, p* q4 g
Subcircuit of a Lumped-Pi Model of a Lossless,9 g% W. g' B$ l
Multiconductor Transmission Line 956
& B+ N; q3 f0 ^: }% TAppendix D A SPICE (PSPICE) Tutorial 959: I, n6 R0 J! z+ T6 |$ h8 D
D.1 Creating the SPICE or PSPICE Program 960" q E/ }8 z: |. L/ X5 G, F
D.2 Circuit Description 961# N- u5 [1 _ ]' B# \. {8 B0 }
D.3 Execution Statements 966
9 m% O6 {/ T6 H6 ~0 q% ~D.4 Output Statements 968
! O/ @2 Q. w' D5 b, V9 ^D.5 Examples 970
% C; k1 k$ Y9 b* l( Y5 WReferences 974
2 D- }$ x* F1 t- Q3 L; t, LIndex 975
7 p3 O+ @3 `9 I# }1 x, s
2 n1 g5 i; b) X# j |
|