|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
把这个遗传算法的程序粘过来,即使对我可能没什么用了,但也可能有需要用的人。
' b# M0 C8 Q) N7 V0 G# I$ s7 I# u$ H, D1 q' H3 ]
程序很详细,当时上课的时候就是用这个程序编的一篇小报告。程序很详细。
) T9 i3 v! D; e! A5 d) I
8 W. j7 I2 F7 D, C3 @/ l2 L- function main()
- %% -------------主函数-----------------------------------
- % 用遗传算法求:
- % max: f(x1,x2) = 21.5+x1*sin(4*pi*x1)+x2*sin(20*pi*x2)
- % s.t: -3.0 <= x1 <= 12.1
- % 4.1 <= x2 <= 5.8
- %---------------------------------------------------------------
- clear
- clc
- close all
- popsize = 100; %种群大小
- x1_length = 18; %x1长度为18
- x2_length = 15; %x2长度为15
- chromlength = 33; %二进制编码长度
- pc = 0.25; %交叉概率
- pm = 0.01; %变异概率
- pop = initpop(popsize,chromlength); %初始种群
- for i = 1:1000 % 迭代1000次
- [objvalue] = cal_objvalue(pop);%计算计算函数值
- fitvalue = objvalue; %令适应度等于函数值
- [newpop] = selection(pop,fitvalue); %选择操作
- [newpop] = crossover(newpop,pc); %交叉操作
- [newpop] = mutation(newpop,pm); %变异操作
- pop = newpop; %更新种群
- % 将种群的每个个体表示出来
- [A B] = binary2decimal(newpop);
- [y] = cal_objvalue(newpop);
- figure(1);
- set(1, 'unit', 'normalized', 'position', [0.1,0.1,0.7,0.7]);
- if i<=100&mod(i,10)==0 %每迭代10次做一次图,画100次以内的图
- j = floor(i/10);
- %画3d图
- X = -3.0:0.1:12.1;
- Y = 4.1:0.1:5.8;
- subplot(2,5,j);
- [X, Y] = meshgrid(X,Y);
- Z = 21.5 + X.*sin(4*pi*X) + Y.*sin(20*pi*Y);
- mesh(X,Y,Z);
- hold on;
- title(['迭代次数为 n=' num2str(i)]);
- plot3(A,B,y,'*');
- end
- [bestindividual,bestfit]=best(pop,fitvalue);%寻找最优解
- [x1 x2] = binary2decimal(bestindividual); %将二进制值转换为十进制
- BEST(i) = bestfit;
- X1(i) = x1;
- X2(i) = x2;
- end
- [max_value,index] = max(BEST');
- best_x1 = X1(index);
- best_x2 = X2(index);
- figure(2);
- set(2, 'unit', 'normalized', 'position', [0.1,0.1,0.7,0.7]);
- i = 1:1000;
- plot(i,BEST);
- axis([0,1000,0,40]);
- xlabel('进化代数');
- ylabel('函数值');
- text(100,10,'交叉概率pc = 0.6 变异概率pm = 0.01 进化代数1000次');
- text(100,8,['After ',num2str(index),' generations,',...
- ' the max value was got.']);
- text(100,6,[' x1 = ',num2str(best_x1),' x2= ',num2str(best_x2),...
- ' max value= ', num2str(max_value)]);
- fprintf('After %.0f times iterations, max_value was got.\n',index);
- fprintf('the best x1 is --->> %5.2f\n',best_x1);
- fprintf('the best x2 is --->> %5.2f\n',best_x2);
- fprintf('the best y is --->> %5.2f\n',max_value);
- fprintf('\n');
- fprintf('After %.0f times iterations, final_value was got.\n',1000);
- fprintf('the final x1 is --->> %5.2f\n',x1);
- fprintf('the final x2 is --->> %5.2f\n',x2);
- fprintf('the final y is --->> %5.2f\n',bestfit);
- function pop = initpop(popsize,chromlength)
- %% -------------初始化种群函数----------------
- % 初始化种群大小
- % 输入变量:
- % popsize:种群大小
- % chromlength:染色体长度--》转化的二进制长度
- % 输出变量:
- % pop:种群
- %---------------------------------------
- pop = round(rand(popsize,chromlength)); %随机产生一个矩阵,每一行是一个长33位染色体;
- function [pop1 pop2] = binary2decimal(pop)
- %% -----------解码函数---------------------
- % 二进制转化为十进制数
- % 输入变量:
- % 二进制种群
- % 输出变量:
- % 十进制数值
- %-----------------------------------------
- for i = 1:18
- pop_x1(:,i) = 2.^(18 - i).*pop(:,i);
- end
- for j = 1:15
- pop_x2(:,j) = 2.^(15 - j).*pop(:,j+18);
- end
- %sum(.,2)对行求和,得到列向量
- temp1 = sum(pop_x1,2);
- temp2 = sum(pop_x2,2);
- pop1 = -3.0 + temp1*15.1/(2^18-1); %pop1表示输出x1的十进制数
- pop2 = 4.1 + temp2*1.7/(2^15-1); %pop2表示输出的x2的十进制数
- function [objvalue] = cal_objvalue(pop)
- %% --------------计算函数值函数----------------------
- % 计算函数目标值
- %输入变量:二进制数值
- %输出变量:目标函数值
- %---------------------------------------------
- [x1 x2] = binary2decimal(pop);
- objvalue = 21.5 + x1.*sin(4*pi*x1) + x2.*sin(20*pi*x2);
- function [newpop] = selection(pop,fitvalue)
- %% -----------------根据适应度选择函数-------------------
- % 输入变量 :pop:二进制种群
- % fitvalue: 适应度
- %输出变量: newpop: 选择以后的二进制种群
- % -------------------------------------------
- %构造轮盘
- [px,py] = size(pop);
- totalfit = sum(fitvalue);
- p_fitvalue = fitvalue/totalfit;
- p_fitvalue = cumsum(p_fitvalue);%概率求和后排序
- ms = sort(rand(px,1)); %产生一列随机数,从小到大排列,相当于转转盘10次
- fitin = 1;
- newin = 1;
- while newin <= px
- if(ms(newin)) < p_fitvalue(fitin) % 转盘转到 fitin 的位置
- newpop(newin,:) = pop(fitin,:); %新种群的第 newin 个体为pop中的第fitin 个体
- newin = newin + 1;
- else
- fitin = fitin +1; %相当于每次都从第一个比较起,依次加1,直至比较完,看转到的是哪一个
- end
- end
- function [newpop] = crossover(pop,pc)
- %% ----------交叉函数--------------------
- % 输入变量:pop:二进制的父代种群数
- % pc :交叉概率
- % 输出变量:newpop: 交叉后的种群数
- %---------------------------------------
- [px,py] = size(pop);
- newpop = ones(size(pop));
- for i = 1:2:px-1 % 1与2交叉。3与4交叉。。。。。每次隔一个,因此步子为2
- if (rand<pc) % pc = 0.6,即有60%的机会交叉
- cpoint = round(rand*py); %交叉点随机选取,互换交叉点以后的值
- if cpoint <= 0
- % cpoint = 1;
- continue;
- end
- newpop(i,:) = [pop(i,1:cpoint),pop(i+1,cpoint+1:py)];%交叉后的第i个个体
- newpop(i+1,:) = [pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
- else % 40%的机会不交叉
- newpop(i,:) = pop(i,:);
- newpop(i+1,:) = pop(i+1,:);
- end
- end
- function [newpop] = mutation(pop,pm)
- %% ------------变异函数---------------------------
- % 输入变量 pop: 二进制种群
- % pm : 变异概率
- % 输出变量: newpop : 变异以后的种群
- %-----------------------------------------------
- [px,py] = size(pop);
- newpop = ones(size(pop)); %只是起到提前声明的作用,提高运算速度
- for i = 1:px
- if(rand<pm)
- mpoint = round(rand*py);
- if mpoint<=0
- mpoint = 1;
- end
- newpop(i,:) = pop(i,:);
- if newpop(i,mpoint) == 0
- newpop(i,mpoint) = 1;
- else
- newpop(i,mpoint) = 0;
- end
- else
- newpop(i,:) = pop(i,:);
- end
- end
- function [bestindividual,bestfit] = best(pop,fitvalue)
- %% --------------选出最优个体函数-----------------------
- % 输入变量: pop :种群
- % fitvalue : 种群适应度
- % 输出变量: bestindividual : 最佳个体(二进制)
- % bestfit : 最佳适应度值
- % ---------------------------------------------
- [px,py] = size(pop);
- bestindividual = pop(1,:);
- bestfit = fitvalue(1);
- for i = 2:px
- if fitvalue(i)>bestfit
- bestindividual = pop(i,:);
- bestfit = fitvalue(i);
- end
- end
, \0 n+ k1 a1 ?$ P' h 8 u. |6 K% A9 A5 J# x) @, D4 |
" B1 x9 O9 Z2 a3 o
3 ^9 C, r) a4 ]+ ]3 [
; D1 p6 J' w# G) L3 N( r" ^0 S1 b1 b) {6 ~
|
|