找回密码
 注册
关于网站域名变更的通知
查看: 549|回复: 1
打印 上一主题 下一主题

Matlab的BP神经网络各种不同算法程序

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-11 15:02 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
1:一般模式的BP:2 C. z" z1 Y: T  X
clc
7 X( S1 k5 X, N! z- @P=[-1 -1 2 2 ;0 5 0 5];; t4 f& U1 e' _4 b' }
T=[-1 -1 1 1];
" G" C- ~) L( U8 x/ k! z& i) b  Cnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingd');
! A- Z2 H0 ]/ d7 w7 U+ o3 f( {  m: Tnet.trainParam.show=50;8 N$ X) a% t7 w6 M) Z- q% o. n
net.trainParam.lr=0.05;
/ m5 d0 S  r! P/ Gnet.trainParam.epochs=300;5 k3 o" H1 U5 W3 {9 Q
net.trainParam.goal=1e-5" j! F" L5 K- v
[net tr]=train(net,P,T);) P; q7 ]! s2 V( G8 Z; }6 m' X& [
: _, r7 Y" e& f( ?& y$ c
2:加入动量的BP
% l4 g/ M' D+ Nclc+ L; T0 o5 k+ r# Y- [5 f/ W
P=[-1 -1 2 2 ;0 5 0 5];6 G1 |5 k5 P# _; y
T=[-1 -1 1 1];1 @3 K( b0 H: O) h, m3 X
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingdm');
- F4 T5 x; s! W+ b3 `* \net.trainParam.show=10000;
( P! s% i/ F! F% snet.trainParam.lr=0.05;+ h8 l( g2 `- G1 L' d7 W+ }& U
net.trainParam.mc=0.9;2 L) [9 M+ @  b) X0 V( E
net.trainParam.epochs=10000;, T/ B) z! a/ e
net.trainParam.goal=1e-5*100
- W& U( k9 K; \  W! {5 Q9 G[net tr]=train(net,P,T);2 H9 v8 }0 a6 t6 S4 }6 |
$ Z; o) o( r! a; y6 E, z- `
3:自适应LR变步长:
  j0 n4 ^9 M( o% Pclc
; k  M( p6 V' c0 {  ~2 OP=[-1 -1 2 2 ;0 5 0 5];
2 S9 D; r6 `; }8 M" W- H' iT=[-1 -1 1 1];
7 W1 r$ H+ Q6 m% S) R  Q1 z5 t3 ~net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingda');
! |. e! w; m; q; ynet.trainParam.show=10000;- h  x% O# l. F
net.trainParam.lr=0.05;; m6 ?+ l5 N0 ?: S+ |3 L
net.trainParam.lr_inc=1.05;  t$ R. P! B( _$ V$ g- g2 B3 r0 i0 C
net.trainParam.epochs=10000;
: [! {% Q& W& s( Nnet.trainParam.goal=1e-5*100* j" z& [, C2 U' h. r
[net tr]=train(net,P,T);: E' v0 [6 ~) [9 \% v

: v  g$ P2 d0 |) H; Y3 i: [
! g8 v7 C) e  _# X6 l* g4:弹性梯度法2 [  N! q0 X/ i  ^( [, Z$ w" |
clc
# F9 e1 R( [1 O9 E9 J" ]P=[-1 -1 2 2 ;0 5 0 5];: {/ |6 t/ A( L; p
T=[-1 -1 1 1];$ b# h7 H* ?7 c( G' b& W
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainrp');/ w5 Q; U/ C! J. X+ J' B5 F
net.trainParam.show=10000;" s0 Y# F2 q, i' u. v
net.trainParam.lr=0.05;
! g* `5 t& i& E5 `5 }9 @% Jnet.trainParam.lr_inc=1.05;" F6 q: b; [+ R/ V$ c) @1 E5 s
net.trainParam.epochs=10000;& m9 R/ g" `6 a, m9 z  G
net.trainParam.goal=1e-5*100! U' {5 x% A/ n6 M6 q
[net tr]=train(net,P,T);
. s' Y! q7 i0 A# z/ F& D/ R& h+ H9 ]- k3 p& r4 a7 b' x5 O
5:共轭梯度1
: }9 Z% y+ h7 }5 l; V0 `/ T. Aclc
; `: T7 ~2 V: fP=[-1 -1 2 2 ;0 5 0 5];. J+ x) q% a" x  h! V3 `
T=[-1 -1 1 1];7 D  s# G+ \; Y% e
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgf');) _% k* L' J+ }9 f8 U/ G0 F
net.trainParam.show=10000;
2 w' u" w  n1 Knet.trainParam.lr=0.05;
( j8 S5 ~$ `5 Q6 i1 s) \+ R6 s" Snet.trainParam.lr_inc=1.05;# z7 C6 G5 T' X2 ?% t; @0 J+ a
net.trainParam.epochs=10000;
* t2 N% X. ^: Z- b7 O9 |$ ynet.trainParam.goal=1e-5*100  l; K' w5 @# L& K" F7 ]
[net tr]=train(net,P,T);
# f/ t: i7 C1 m" V* j8 J/ y  {1 i. N! i' a( W
6:共轭梯度24 u( `8 ^3 m. T7 T; I) C
clc7 D3 I$ P. I( ~( _
P=[-1 -1 2 2 ;0 5 0 5];, h0 `8 w" |8 W$ ^; o- M
T=[-1 -1 1 1];
0 ?* l7 }* P0 r) @& |  B1 d# Rnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgp');
1 _, L5 c9 b3 Y, E8 Y- M1 J4 V* ~net.trainParam.show=10000;
) T. c) w( J3 r& [+ w$ }! Inet.trainParam.lr=0.05;
9 ^  Z- A3 \+ y2 ynet.trainParam.lr_inc=1.05;1 m3 j$ S0 {! C) J& U% w. T! `$ M2 l
net.trainParam.epochs=10000;$ t7 J) A: M, ?5 L+ x
net.trainParam.goal=1e-5*100
. v4 D* B; D* \/ {, @[net tr]=train(net,P,T);
+ v% `- y. i/ ?5 q; J% s( ~
# `7 h& J- J; G; M! g6 O8 D* @7:共轭梯度33 e+ `; v7 v& E& y3 M$ f! ~
clc
6 L" }2 o6 F/ [% i1 V( nP=[-1 -1 2 2 ;0 5 0 5];' \" A2 o7 g; v+ V$ e
T=[-1 -1 1 1];
; {  t* |, ]7 a6 M; }4 {net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');8 V. A8 Z; }! p1 J- [
net.trainParam.show=10000;
4 _2 q' h6 u2 J9 e, e. j. knet.trainParam.lr=0.05;
/ ?' p+ @9 P! y. jnet.trainParam.lr_inc=1.05;3 s7 |1 m0 J) ^' [6 \
net.trainParam.epochs=10000;
9 b+ z8 D) ?$ j9 n% I& y" b9 Vnet.trainParam.goal=1e-5*1006 p+ `: `4 }" y1 r1 R) u3 x
[net tr]=train(net,P,T);
; S: b7 s9 h5 m; F  o! j) j* e% [; n5 [5 q0 Q! S" Q( [8 ?
8:共轭梯度4
7 D7 R, B9 r1 s9 U$ Z0 a+ mclc8 M7 b! H' w% d5 t: c2 X. ^) z
P=[-1 -1 2 2 ;0 5 0 5];0 E6 u8 t# P) u+ o0 \1 \& {* d
T=[-1 -1 1 1];
! q4 U, t+ f$ ~9 l+ u, q4 Gnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');
7 c1 k/ f. d5 |, w( hnet.trainParam.show=10000;; L# c9 b4 a* U8 n9 x* f4 R8 x0 b& Z
net.trainParam.lr=0.05;3 k) z; D) j1 T$ o+ c+ k0 b
net.trainParam.lr_inc=1.05;
" q. u' N2 c  ~  v# b; Y6 Y! Lnet.trainParam.epochs=10000;
9 I% a) l6 p5 `6 Hnet.trainParam.goal=1e-5*100
9 T! P2 E$ |& V. C[net tr]=train(net,P,T);
  O. ]8 n1 g  B/ ^/ T" ~2 S# a7 ?+ [' \0 `1 e
9:拟牛顿法;, I' @7 R& e  O& I9 _; X6 w8 l% z
clc; J9 |& L% V  I
P=[-1 -1 2 2 ;0 5 0 5];
1 _0 v# j$ n+ v  z( ]T=[-1 -1 1 1];: q- l6 @% B/ y+ ?
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainbfg');
  ]' w, ~, |: U) Qnet.trainParam.show=10000;' M0 }9 k0 z/ ?
net.trainParam.lr=0.05;
; L# c8 ?: D9 z1 _% A8 A4 Y0 r$ znet.trainParam.lr_inc=1.05;
/ w9 y- x/ N9 L" t: Inet.trainParam.epochs=10000;
' A5 m! L3 A$ p/ r$ z5 snet.trainParam.goal=1e-5*100
1 j( @" W# i6 b. r4 F# m[net tr]=train(net,P,T);/ N  Y+ p1 u& w) _" `
  l9 g7 L/ E+ E; v" v3 j" U5 V
10:一步正割
1 J2 t8 N3 C& E. y$ V4 d9 v% m; }clc
/ l" I% h. S8 ~+ Y1 P! p2 M7 YP=[-1 -1 2 2 ;0 5 0 5];
+ N& {" I; K$ P% n! _T=[-1 -1 1 1];
# d* D, S8 z& }& F% T& U0 d0 T/ ^: xnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainoss');3 [- |* m$ }+ m. i
net.trainParam.show=10000;) w- t7 @) J/ [- a3 ]6 N
net.trainParam.lr=0.05;
, j$ c3 [1 l3 @- R( w" Xnet.trainParam.lr_inc=1.05;
- e! c+ H) q( ?; Pnet.trainParam.epochs=10000;
7 x8 |. ]! S2 Q3 ?5 wnet.trainParam.goal=1e-5*100
" C( T" x6 x) A" M! {* o[net tr]=train(net,P,T);
% q  G& }- f% [4 I
2 f: y# Y" N! e5 M* V9 V11:levenberg-marquarat:# H& Y9 f- M: `( H' _
clc6 L' r5 R' S8 X: L
P=[-1 -1 2 2 ;0 5 0 5];
2 W9 N! V9 y3 u6 s7 b6 KT=[-1 -1 1 1];% s# ]/ a& ?0 O
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainlm');" W) |- w" J* m: y
net.trainParam.show=10000;
' J7 p( e# R( c; Pnet.trainParam.lr=0.05;
, D5 h5 G7 U1 ynet.trainParam.lr_inc=1.05;0 C( \+ W. v& q, I
net.trainParam.epochs=10000;: z/ U0 F4 Q- H: H( a
net.trainParam.goal=1e-5*100
2 [  o+ A; j, M( |2 I. a! w3 K[net tr]=train(net,P,T);

3 P8 g2 R$ [9 p9 ~" j

/ |( i  S9 K* `' I9 z
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-10-31 18:35 , Processed in 0.156250 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表