|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1:一般模式的BP:
e9 ^1 m: S. Hclc
% C' ^) |+ B* f @7 \! a/ |5 yP=[-1 -1 2 2 ;0 5 0 5];
2 ]# N" K5 l9 _/ }2 g' x1 ~; dT=[-1 -1 1 1];0 U/ T/ D, w! G
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingd');
" i1 O( Q3 K1 v) h& _8 B3 }! pnet.trainParam.show=50;
* o$ ?5 i! P( L* znet.trainParam.lr=0.05;1 s/ w: w3 _0 D! c0 Y4 n
net.trainParam.epochs=300;# Z7 O5 D% x* m Y
net.trainParam.goal=1e-59 U# r0 @/ _2 d- P5 T- f
[net tr]=train(net,P,T);
. H) x* b6 K8 ?" T F, D% h. h- X( o) w, G; C, M/ B! [4 ?8 c
2:加入动量的BP
; B) ^0 I8 K9 ~% }clc
, [, A" p+ k7 |3 S" Q* e5 ^P=[-1 -1 2 2 ;0 5 0 5];
& @1 o+ a1 g i: R" ^! u8 FT=[-1 -1 1 1];
5 m5 o c7 \# J" i& E6 onet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingdm');
7 t) S0 [! ?% [4 U1 z% }net.trainParam.show=10000;
0 M+ a* D. V* G, C4 o1 Q: M4 l- bnet.trainParam.lr=0.05;
" v/ B. F. b6 n+ O+ G6 ~net.trainParam.mc=0.9;
" c% f- [! Q1 J7 W6 P, fnet.trainParam.epochs=10000;- l$ G+ t" p' K+ f( b9 h3 A
net.trainParam.goal=1e-5*100
9 z' e- W* x' X$ g4 H% C[net tr]=train(net,P,T);7 G) b( K I; M& k
5 w* ]8 U* }) Z
3:自适应LR变步长:4 h$ p9 `# g; c& ^7 q
clc( f6 p3 b2 Y, n& D- F/ q
P=[-1 -1 2 2 ;0 5 0 5];
. Y% K, c! g9 h, w: n# l7 D* gT=[-1 -1 1 1];
5 C5 l/ N: C- N/ ]6 p6 {net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingda');" g- }( b7 P: v
net.trainParam.show=10000;1 p+ D2 A$ y1 c- |' y
net.trainParam.lr=0.05;
0 h1 r1 C7 W' I' C. Ynet.trainParam.lr_inc=1.05;
& E+ _$ g/ ]! |! T1 d7 ^5 Qnet.trainParam.epochs=10000;0 Q( z/ ]5 B) X6 L
net.trainParam.goal=1e-5*100
+ Y- B" }: B1 @" I( i8 l. ?[net tr]=train(net,P,T);
& C. O/ Y* o9 ^& B% k' Y7 T
$ v1 M/ Z3 W" V$ K& N/ ?7 [. J5 {$ N
! K8 x- d5 a% i4:弹性梯度法- g% A6 e+ L5 S
clc
u( l( k S4 B5 z' G6 o3 R: jP=[-1 -1 2 2 ;0 5 0 5];
. ~5 q! x2 i3 ?" [ h9 XT=[-1 -1 1 1];( a* r: c8 ^" V, q8 ?
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainrp');
+ B4 u& R1 i4 @" P0 i# Mnet.trainParam.show=10000;2 P5 R5 }; w8 R3 y. ]
net.trainParam.lr=0.05;
' ] u |* r( e4 \net.trainParam.lr_inc=1.05;0 H+ V! R) e% C& c& u! Y& v; {" Y
net.trainParam.epochs=10000;
9 x& c& B8 W' i7 V, Cnet.trainParam.goal=1e-5*100
2 J1 G7 o% B& H) H/ r[net tr]=train(net,P,T);
7 Y- K; C7 S6 |6 F
4 B1 g6 S. f/ }: J5:共轭梯度1
6 a6 [+ Y- A; I0 s- V/ Uclc2 C1 L" v6 ~2 B/ A7 P
P=[-1 -1 2 2 ;0 5 0 5];
0 I: Z: v0 S# Z7 p) B# ST=[-1 -1 1 1]; t! y/ _! \. q V" ]
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgf');
$ f, p# G9 R* m& a& s6 bnet.trainParam.show=10000;
' n% E) \4 u, ?& M/ T9 `net.trainParam.lr=0.05;8 L. S6 F& Y1 j
net.trainParam.lr_inc=1.05;
8 p5 X$ J$ L N) e2 G5 gnet.trainParam.epochs=10000;
- k9 j3 y9 |# _2 f7 |: rnet.trainParam.goal=1e-5*100
Y% [& s0 q2 d, f. F. Z+ o T[net tr]=train(net,P,T);, D; ?3 P, k6 V
1 u( w( `3 _1 e3 R' |8 {# X4 Y6:共轭梯度2
0 {( t+ N5 F9 c) p) c6 Q- s1 sclc! A$ |6 q; F+ l4 j( b
P=[-1 -1 2 2 ;0 5 0 5];
. I: p/ Q& }5 B4 ?" I9 ]& oT=[-1 -1 1 1];
3 J0 h `& E1 u( L2 w H8 |net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgp');
5 U$ v+ ]7 ~- jnet.trainParam.show=10000; e" [3 E* L, u/ A/ H% q, ]4 o
net.trainParam.lr=0.05;" v: N& I n1 U0 q$ o* F
net.trainParam.lr_inc=1.05;1 Q% }4 a) V4 v- _7 N& H3 b
net.trainParam.epochs=10000;& j: k- `1 z; q% w
net.trainParam.goal=1e-5*100/ X$ |8 G; M) N( _$ Z9 N
[net tr]=train(net,P,T);
& s; h0 d# N2 \$ E/ n+ q4 ?1 v3 T# v& e; S, a A; V! j {
7:共轭梯度3
9 [5 u( S; {5 t$ z8 S2 Aclc' v8 Y' _2 k3 [6 L- }3 U' j
P=[-1 -1 2 2 ;0 5 0 5];
+ [6 l) E( c8 a, C+ I" }9 IT=[-1 -1 1 1];7 j x z) U- J) I
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');
! t4 l) s; ]4 X+ knet.trainParam.show=10000;
; g% p" g1 {$ wnet.trainParam.lr=0.05;
& M" X' L4 u# q' J9 inet.trainParam.lr_inc=1.05;; ~. \3 N; R1 T+ c3 z" o
net.trainParam.epochs=10000;
; h$ \& L5 F8 }% I5 Jnet.trainParam.goal=1e-5*100( o. H! ]$ u# P
[net tr]=train(net,P,T);
O* \. L6 b, L% V4 N) c' a% z. Z$ N, u" J1 V# `+ |& b% `
8:共轭梯度4
; x$ m$ A7 M/ s/ o9 _5 qclc
$ E+ J' ~1 r- j# u8 OP=[-1 -1 2 2 ;0 5 0 5];# d0 s* k. b& Q: k; e# l
T=[-1 -1 1 1];% ?1 B. n. w3 H/ u
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');
) N) V0 v! A1 Lnet.trainParam.show=10000;0 x/ B" R1 b6 p/ P( m( k$ n3 K
net.trainParam.lr=0.05;! ?" ]0 }0 G- m0 ?
net.trainParam.lr_inc=1.05;! e9 l+ U9 C2 j$ p8 W& x+ h/ }/ J+ t9 S; _
net.trainParam.epochs=10000;' C6 R' U; x0 b) P$ v4 Q8 a
net.trainParam.goal=1e-5*100" a& h. f$ P) A p) u+ b
[net tr]=train(net,P,T);1 C! S8 E+ ?$ S
6 X9 M( I* o+ V, j) ?2 X9:拟牛顿法;
7 n$ S1 z0 _0 [5 f f8 S. L' Hclc
: K4 g& q% R! f! l1 QP=[-1 -1 2 2 ;0 5 0 5];/ U5 u# U& d+ K4 b0 I/ H/ i
T=[-1 -1 1 1];
2 T, w% G( S9 P' a+ `: q. Qnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainbfg');
; \7 j2 ]6 i% s9 c2 v4 Mnet.trainParam.show=10000;# D' N- L. Y- g8 ?0 s0 d7 x" x9 Y
net.trainParam.lr=0.05;" A' B* c2 m( O, E2 m" }7 x7 k. F
net.trainParam.lr_inc=1.05;- | W1 ]5 |1 ^7 A9 P
net.trainParam.epochs=10000;) d4 E4 E, }7 I1 d% b
net.trainParam.goal=1e-5*100; ~4 G. t2 h; M
[net tr]=train(net,P,T);7 m% ~! k1 K1 ?4 C
0 q% x3 J9 o$ O, Q
10:一步正割
* E3 M" w% j* u' lclc' n+ i( i, a& @3 S. q- A- Z2 y
P=[-1 -1 2 2 ;0 5 0 5];
) \, Q2 d2 c9 C vT=[-1 -1 1 1];' |+ B9 s8 j) m2 b; H, ]6 b
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainoss');- R0 B3 ]2 n6 b6 b
net.trainParam.show=10000;
- M, t$ A' _+ W& ^net.trainParam.lr=0.05;
( _+ l, ?0 j% Cnet.trainParam.lr_inc=1.05;+ g- C, X7 b. {! o2 V) U; S
net.trainParam.epochs=10000;
U5 `. Z: g, t4 _) `net.trainParam.goal=1e-5*100
* A G" j) ?" E2 J( P5 W[net tr]=train(net,P,T);
4 g1 k5 X# D3 ~* f% v2 C: |5 h- r
3 V B& M# W* n% h/ X11:levenberg-marquarat:
/ c5 O+ A2 s$ D4 S! G( Gclc' l `* ?! O6 Z- Z, t6 B
P=[-1 -1 2 2 ;0 5 0 5];
# q, U. P; |8 vT=[-1 -1 1 1];5 v# C1 k, U; `
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainlm');: a7 F" i+ l# k- k
net.trainParam.show=10000;
8 G: a- O7 G/ g: e1 Znet.trainParam.lr=0.05;+ }) _* A0 i( U4 r1 ^% T
net.trainParam.lr_inc=1.05;2 n/ S) M0 i' b" A1 _9 w: ]4 m
net.trainParam.epochs=10000;! K* B& Q% g/ ?5 |
net.trainParam.goal=1e-5*1007 u, |2 t$ p6 y; P9 S0 r: B
[net tr]=train(net,P,T);
- N- k" q- E/ j$ D3 f
- d A& z! |' v1 e! A1 k |
|