|  | 
 
| 
1 d1 H! C, K, ^; s
x
EDA365欢迎您登录!您需要 登录 才可以下载或查看,没有帐号?注册  目录1 |) E( i, Z% w9 U
 2 \5 K; r' m4 }( F6 X2 a
 Syntax. N- \) t. K& I6 N! r7 K; l8 Z7 w
 3 Q, s, L7 o; @+ S/ Y+ T) _/ {- Z
 Description
 + c% E" s$ I1 _3 k0 `# A4 {" ~
 6 ?/ A9 F( L4 G. E1 S% C* H       Y = fft(X)+ v0 p' F3 k- r$ o( m
 ! s" [) }- h* W) |! `" ]5 ~
 Y = fft(X,n)
 : z/ _1 @$ a2 y9 g; {* i9 q" g* S7 b  n' G9 m
 Y = fft(X,n,dim)
 5 m, v- h* B2 x* ?5 v. N- z0 |: _: t
 Examples# ^; r9 Q. h3 u5 n
 , T6 p; o+ ^  i' U8 Z
 Noisy Signal+ N" f  M0 r6 M9 f8 p
 % x) W. Z: m  g/ E# V1 ^% o
 * r! D4 T. ?3 i* |$ T1 w
 
 7 ~7 }" z6 |) i9 _
 . e+ D; I3 `" \# P/ k: K. eSyntax
 6 ]/ C# a, H9 G( Q  _4 r) ?2 \
 " L4 c8 ^, l" g6 ]( j# M) NY = fft(X)3 R( ]2 ?( C& K$ j: B& X
 2 a5 D; `* o  c
 Y = fft(X,n)
 ! x! ^' R1 A, f. [  B- D. C* T4 ^! Y" Z  M+ ]. h, i
 Y = fft(X,n,dim)
 + h+ r5 e# L- X, d+ x& L; t! P. Q8 l& j% Q; X: t
 $ G( Q+ n6 ~* ?; @  T6 R; m9 [
 Description
 . ]% ~, U# {8 L0 s. x& l
 1 X: `' l8 {( ?+ Q; ~( {Y = fft(X)
 ! w' V- h1 W% P7 [- |5 a9 t& f8 H' Y0 t3 ^$ U" [4 P. V  Y$ X
 Y = fft(X) 使用fast Fourier transform(FFT)算法计算信号X的离散傅里叶变换:6 }4 g9 t# h+ s* t6 y5 m( S
 - o4 x, N0 K* a5 U
 
 - Y. x- R6 a( ^6 `) P如果 X 是一个向量,那么 fft(X) 返回向量的傅里叶变换;如果 X 是一个矩阵,则 fft(X) 视X的列为向量,然后返回每列的傅里叶变换;如果X是多维数组,则fft(X)将沿大小不等于1的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。/ G- i- b8 X; M( ?' u( s& x6 X  F
 
 `7 C8 Y; `9 r  m; w8 v2 L$ q- L1 `4 n3 H
 Y = fft(X,n)
 # R9 D3 {; R  K1 A, a, S2 m/ {; g* |# I( O
 2 r% }& ]; o5 A% R$ M& h
 Y = fft(X,n) 返回 n 点 DFT。 如果未指定任何值,则Y与X的大小相同。
 ' E$ A, [6 d: ]4 X: O# S  c( ]
 , I. y: d8 K- l; f# ?  l6 S
 如果X是向量并且X的长度小于n,则用尾随零填充X到长度n。如果X是向量并且X的长度大于n,则X被截断为长度n。如果X是矩阵,那么每个列都被视为向量情况。如果X是多维数组,则大小不等于1的第一个数组维度将被视为向量的情况。8 ]2 L2 K' _4 f8 p- B3 Q* x/ g
 + w5 u6 f& z1 C. y$ M. y5 L; B0 G  r5 f
 
 & g# A% i2 a8 \( {Y = fft(X,n,dim)
 " I) G/ \6 O" Y) U1 y) g2 S7 v, g5 ~4 {9 y- c3 I
 Y = fft(X,n,dim)沿维度dim返回傅立叶变换。 例如,如果X是矩阵,则fft(X,n,2)返回每行的n点傅立叶变换。
 - X8 [# v. h& Q* F5 `/ F% I) V7 H& E, k- F
 
 : N+ U4 x4 B0 d  u* NExamples5 ]1 b! z8 I* H; Y* p1 P+ A
 ' y5 }0 D3 w! n) w. J% L+ g! j
 Noisy Signal" ~% x3 U+ f* x0 Z+ C% B6 ?
 
 + ^- I! i: c2 p! H# O( ]使用傅立叶变换来查找隐藏在噪声中的信号的频率分量。
 ; d# G  d& k7 y* l$ P  p! W
 " h+ {1 o; F) y! j指定采样频率为1 kHz且信号持续时间为1.5秒的信号参数。  i6 Y+ I$ p$ P2 t
 
 5 V' A2 ?& l+ y' C
 clcclearclose all% Use Fourier transforms to find the frequency components of a signal buried in noise.% Specify the parameters of a signal with a sampling frequency of 1 kHz and a signal duration of 1.5 seconds.Fs = 1000;            % Sampling frequencyT = 1/Fs;             % Sampling periodL = 1500;             % Length of signalt = (0:L-1)*T;        % Time vector% Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);% Corrupt the signal with zero-mean white noise with a variance of 4.X = S + 2*randn(size(t));% Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t).figure();plot(1000*t(1:50),X(1:50))title('Signal Corrupted with Zero-Mean Random Noise')xlabel('t (milliseconds)')ylabel('X(t)')% Compute the Fourier transform of the signal.Y = fft(X);% Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.P2 = abs(Y/L);P1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);% Define the frequency domain f and plot the single-sided amplitude spectrum P1.% The amplitudes are not exactly at 0.7 and 1, as expected, because of the added noise. On average,% longer signals produce better frequency approximations.figure();f = Fs*(0:(L/2))/L;plot(f,P1)title('Single-Sided Amplitude Spectrum of X(t)')xlabel('f (Hz)')ylabel('|P1(f)|')% Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact amplitudes, 0.7 and 1.0.%Y = fft(S);P2 = abs(Y/L);P1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);figure();plot(f,P1)title('Single-Sided Amplitude Spectrum of S(t)')xlabel('f (Hz)')ylabel('|P1(f)|')( N4 P7 f# a, Q+ x& ^
 % k4 l! a* \* H
 , `3 }( y6 _9 a1 _. X. k$ B$ n0 Ffigure(1)是加上零均值的随机噪声后的信号时域图形,通过观察这幅图很难辨别其频率成分。2 v6 t+ k: J5 O( i- y1 O4 K& X
 
 6 E) V' ?; t! @; ?( s2 J
   3 [# ~  p8 Z& `' M/ A) e% h, J$ I* q0 b0 o8 Y
 figure(2)是X(t)的单边幅度谱,通过这幅图其实已经能够看出信号的频率成分,分别为50Hz和120Hz,其他的频率成分都会噪声的频率分量。
 ( |& }' L% Z' L# M9 J5 A
 6 J& r" A4 r8 O7 |3 k$ F
   ! z, B0 Y4 ~0 A0 i
 4 h% g6 x1 O6 N4 w( U% Pfigure(3)是信号S(t)的单边幅度谱,用作和figure(2)的幅度谱对比,原信号确实只有两个频率成分。- \% S+ I! w% `' W1 v
 
 ! x5 u* S; Y0 Q: E+ F" t
  8 s5 Z/ y+ d: L9 h, N 
 + A- F4 f  R4 |, X上面三幅图画到一起:% p0 g5 E3 u0 Z% O
 8 m$ C; k2 V+ m* U& ~6 k; H
 
   ' ^' c+ j# s* ^: C4 I. v
 3 h; w( F1 h3 p$ t5 N6 f3 s; f0 [8 i) G- [' x. X! m. \% r2 r  T" z
 
 & H( D$ l. T9 q2 o; c7 w
 ; v3 h1 h% R+ A7 t
 | 
 |