|  | 
 
| 
$ f7 g/ V" k" R- c7 G
x
EDA365欢迎您登录!您需要 登录 才可以下载或查看,没有帐号?注册  上篇:MATLAB —— 信号处理工具箱之fft的介绍和相关案例分析介绍了MATLAB信号处理工具箱中的信号变换 fft 并分析了一个案例,就是被噪声污染了的信号的频谱分析。: K4 ~9 w7 ]" k- |0 Y1 V. F
 5 C- E  c8 d1 @& p4 y8 j( l  I
 这篇博文继续分析几个小案例:
 " U2 o: M8 k8 P8 A" _( j( U4 X0 \, c" s1 O5 K( L6 A) Z
 Gaussian Pulse
 + R+ b) v' j( Q这个案例是将高斯脉冲从时域变换到频域,高斯脉冲的信息在下面的程序中都有注释:' P5 M8 p( U/ |
 
 ; C6 \2 Z! J4 {& n; F
 clcclearclose all% Convert a Gaussian pulse from the time domain to the frequency domain.%% Define signal parameters and a Gaussian pulse, X.Fs = 100;           % Sampling frequencyt = -0.5:1/Fs:0.5;  % Time vectorL = length(t);      % Signal lengthX = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));% Plot the pulse in the time domain.figure();plot(t,X)title('Gaussian Pulse in Time Domain')xlabel('Time (t)')ylabel('X(t)')% To use the fft function to convert the signal to the frequency domain,% first identify a new input length that is the next power of 2 from the original signal length.% This will pad the signal X with trailing zeros in order to improve the peRFormance of fft.n = 2^nextpow2(L);% Convert the Gaussian pulse to the frequency domain.%Y = fft(X,n);% Define the frequency domain and plot the unique frequencies.f = Fs*(0: (n/2))/n;P = abs(Y/n);figure();plot(f,P(1:n/2+1))title('Gaussian Pulse in Frequency Domain')xlabel('Frequency (f)')ylabel('|P(f)|')8 g. L4 P+ C; w; u" ?- o& U* {
 " B3 h9 r5 Z; B/ ?4 B0 f, Y
 . y$ Z: ^1 n  m% X4 g9 B9 o高斯脉冲在时域的图像:9 v( _, q- {8 O5 y
 % F+ a5 V, k* X# t5 S; j/ [" L- j
 
  5 v8 K4 ~  D' X4 s2 G. f ( ~& \- j! f! q
 高斯脉冲在频域的图像:
 7 n: o& k1 |: \! K8 A7 q& Z
 , g( q% |1 |! |( U( H' v
   / t6 V+ [: ?+ B' t0 R( e( a9 {6 i3 m3 T. m! o# U
 / Q: c3 |6 u8 X" _
 6 s3 d% T! h' \
 Cosine Waves* {5 S) }# |  ?0 a3 ^/ [' t
 
 2 ^; P& W9 F, j' @& v这个例子比较简单,就是不同频率的余弦波在时域以及频域的比较:
 / d+ ~$ o4 b  I4 J# b7 m% c6 m$ {  ^( Z) ~' u" U4 o
 
 clcclearclose all% Compare cosine waves in the time domain and the frequency domain.% % Specify the parameters of a signal with a sampling frequency of 1kHz and a signal duration of 1 second.6 G, p4 C8 Y: r3 p/ |
Fs = 1000;                    % Sampling frequencyT = 1/Fs;                     % Sampling periodL = 1000;                     % Length of signalt = (0: L-1)*T;                % Time vector% Create a matrix where each row represents a cosine wave with scaled frequency. % The result, X, is a 3-by-1000 matrix. The first row has a wave frequency of 50, % the second row has a wave frequency of 150, and the third row has a wave frequency of 300.8 L2 ?( m  z" `; W0 j
x1 = cos(2*pi*50*t);          % First row wavex2 = cos(2*pi*150*t);         % Second row wavex3 = cos(2*pi*300*t);         % Third row wave) {" q8 W; q  `+ B
X = [x1; x2; x3];% Plot the first 100 entries from each row of X in a single figure in order and compare their frequencies.1 `* c6 T( c7 v4 x0 R8 Y0 W" l( V
figure();for i = 1:3    subplot(3,1,i)    plot(t(1:100),X(i,1:100))    title(['Row ',num2str(i),' in the Time Domain'])end$ {0 L, _$ p7 g8 a. b; Q" f1 U
% For algorithm performance purposes, fft allows you to pad the input with trailing zeros. % In this case, pad each row of X with zeros so that the length of each row is the next higher power of 2 from the current length. % Define the new length using the nextpow2 function.; r& i3 _2 c$ ?5 m3 X" F
n = 2^nextpow2(L);% Specify the dim argument to use fft along the rows of X, that is, for each signal.3 O- D5 M1 ]" ]" ]; @
dim = 2;% Compute the Fourier transform of the signals.9 a8 T& h, c; [) |
Y = fft(X,n,dim);% Calculate the double-sided spectrum and single-sided spectrum of each signal.! t' s& C7 B% r" v
P2 = abs(Y/L);P1 = P2(:,1:n/2+1);P1(:,2:end-1) = 2*P1(:,2:end-1);% In the frequency domain, plot the single-sided amplitude spectrum for each row in a single figure.% g. H2 ~+ I+ L4 f3 \+ I; n
figure();for i=1:3    subplot(3,1,i)    plot(0: (Fs/n): (Fs/2-Fs/n),P1(i,1:n/2))    title(['Row ',num2str(i),' in the Frequency Domain'])end; Z9 I4 E* d  u! }+ Y( W
 5 ?) V; ~' n9 n( l3 w: y' q * w. t  O, D, p' h
 下图是频率为50Hz,150Hz以及300Hz的余弦波在时域的图像:* F6 ]. O$ E$ e% s% b( y2 K/ D( j
 " M+ w  ^7 }) A% v/ }( y2 B  |
 
  / R: X" Y* k% ^) @& V* H ! M  k' g, f  ?8 V+ U. X$ R
 下图分别为其fft:% J8 V( T# P2 t2 {# `- |
 6 b' v, e9 u& }) s5 _$ r: U3 A8 |
 
   + ?: q4 E* V% m8 Q! W) T5 {  d  c) {% K4 M- I$ _' U4 ?
 从频域图中可以清晰的看到它们的频率成分位于何处。$ }, P; @6 y4 v0 j8 q
 / ?2 _) f* ^2 k6 s
 7 L$ J8 ~5 A0 O7 {# y, I
 
 | 
 |