TA的每日心情 | 开心 2019-11-20 15:05 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 Colbie 于 2020-3-18 09:58 编辑 " t3 ?) u- G- _/ l- o" S
/ W% b: R" E/ ]" U8 Q7 d) | ^
核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取)
' Y) h8 T0 Q7 L! [+ c z, p' |, L(2)SPE和T2统计量及其控制限的计算, G. [# p3 _5 Q
(3)故障检测; Y. }6 o& W+ c4 ?
+ N0 g0 A3 e1 z. f0 R( j# l$ u' S
参考文献:' Y5 G+ V$ R5 P* _1 |- @
Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59(1) : 223-234.
$ a% o3 j% k% C/ o4 q
6 ?" a: r' H6 e1. KPCA的建模过程(故障检测):! w9 |$ h/ \' e" m
(1)获取训练数据(工业过程数据需要进行标准化处理)
" R M: g( O' I5 ^(2)计算核矩阵
* o$ \! ^$ T8 f; ](3)核矩阵中心化
1 ^5 E9 D4 T7 j9 i(4)特征值分解
3 c+ l5 F( f8 i$ i(5)特征向量的标准化处理
- Q) u/ H, b' _4 i(6)主元个数的选取& k; h# s* o! q6 o. @) l' ^6 } a1 \3 y
(7)计算非线性主成分(即降维结果或者特征提取结果)
7 F0 [; S7 l8 D* X2 O3 `(8)SPE和T2统计量的控制限计算
2 ]1 x. |4 M( c/ ^, B# f- function model = kpca_train(X,options)
- % DESCRIPTION
- % Kernel principal component analysis (KPCA)
- %
- % mappedX = kpca_train(X,options)
- %
- % INPUT
- % X Training samples (N*d)
- % N: number of samples
- % d: number of features
- % options Parameters setting
- %
- % OUTPUT
- % model KPCA model
- %
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % number of training samples
- L = size(X,1);
- % Compute the kernel matrix
- K = computeKM(X,X,options.sigma);
- % Centralize the kernel matrix
- unit = ones(L,L)/L;
- K_c = K-unit*K-K*unit+unit*K*unit;
- % Solve the eigenvalue problem
- [V,D] = eigs(K_c/L);
- lambda = diag(D);
- % Normalize the eigenvalue
- V_s = V ./ sqrt(L*lambda)';
- % Compute the numbers of principal component
- % Extract the nonlinear component
- if options.type == 1 % fault detection
- dims = find(cumsum(lambda/sum(lambda)) >= 0.85,1, 'first');
- else
- dims = options.dims;
- end
- mappedX = K_c* V_s(:,1:dims) ;
- % Store the results
- model.mappedX = mappedX ;
- model.V_s = V_s;
- model.lambda = lambda;
- model.K_c = K_c;
- model.L = L;
- model.dims = dims;
- model.X = X;
- model.K = K;
- model.unit = unit;
- model.sigma = options.sigma;
- % Compute the threshold
- model.beta = options.beta;% corresponding probabilities
- [SPE_limit,T2_limit] = comtupeLimit(model);
- model.SPE_limit = SPE_limit;
- model.T2_limit = T2_limit;
- end
1 U. g# r5 _2 Y
- b$ P# E9 l# p0 @) D6 x2 y
$ l8 D( M1 E5 B" R( j7 n2. KPCA的测试过程:% A9 D* b% |) S u
(1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理)8 B. t' w5 V4 F) _, v# f/ n/ ~
(2)计算核矩阵& e: u$ i% S7 J% P+ ^ Y
(3)核矩阵中心化0 Y; j7 e' Y+ a. r
(4)计算非线性主成分(即降维结果或者特征提取结果)
% J. r- l. W/ o- K9 Y* G8 i7 L(5)SPE和T2统计量的计算' M; p) T1 ]2 @+ a* W' e) J. M
- function [SPE,T2,mappedY] = kpca_test(model,Y)
- % DESCRIPTION
- % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y
- %
- % [SPE,T2,mappedY] = kpca_test(model,Y)
- %
- % INPUT
- % model KPCA model
- % Y test data
- %
- % OUTPUT
- % SPE the SPE statistic
- % T2 the T2 statistic
- % mappedY the nonlinear component of Y
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % Compute Hotelling's T2 statistic
- % T2 = diag(model.mappedX/diag(model.lambda(1:model.dims))*model.mappedX');
- % the number of test samples
- L = size(Y,1);
- % Compute the kernel matrix
- Kt = computeKM(Y,model.X,model.sigma );
- % Centralize the kernel matrix
- unit = ones(L,model.L)/model.L;
- Kt_c = Kt-unit*model.K-Kt*model.unit+unit*model.K*model.unit;
- % Extract the nonlinear component
- mappedY = Kt_c*model.V_s(:,1:model.dims);
- % Compute Hotelling's T2 statistic
- T2 = diag(mappedY/diag(model.lambda(1:model.dims))*mappedY');
- % Compute the squared prediction error (SPE)
- SPE = sum((Kt_c*model.V_s).^2,2)-sum(mappedY.^2 ,2);
- end
7 t* H! y' {% |8 f+ w1 q
; i5 R! l0 X. W6 Q/ G6 r. @ Y W8 m; n7 v$ `$ t( s4 t
; p7 J* k# G+ d8 `2 H8 u% x' C
3. demo1: 降维、特征提取
8 C% V! Q9 K' R: n. ~! d% B' `- [(1) 源代码
# b/ _6 m f$ j* h' i: W) C. L( R- % Demo1: dimensionality reduction or feature extraction
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- % 4 circles
- load circledata
- %
- X = circledata;
- for i = 1:4
- scatter(X(1+250*(i-1):250*i,1),X(1+250*(i-1):250*i,2))
- hold on
- end
- % Parameters setting
- options.sigma = 5; % kernel width
- options.dims = 2; % output dimension
- options.type = 0; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % Principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- figure
- for i = 1:4
- scatter(model.mappedX(1+250*(i-1):250*i,1), ...
- model.mappedX(1+250*(i-1):250*i,2))
- hold on
- end; O2 G- }$ U; I! E- b; ^$ H& N% T6 a
; x5 |3 ?" {/ y. t. }9 d; L: R
8 h' N$ i/ j3 b+ y& H(2)结果 (分别为原图和特征提取后的图)
) g0 S H: v' X1 `( {$ T
+ D9 r) i s' |
3 l) P: B; r9 f D9 J, }4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果) C7 D( [0 |2 Z
(1)源代码- k1 J! _2 q# @0 o" E5 T
- % Demo2: Fault detection
- % X: training samples
- % Y: test samples
- % Improve the peRFormance of fault detection by adjusting parameters
- % 1. options.sigma = 16; % kernel width
- % 2. options.beta % corresponding probabilities
- % 3. options.cpc ; % principal contribution rate
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- %
- X = rand(200,10);
- Y = rand(100,10);
- Y(20:40,: ) = rand(21,10)+3;
- Y(60:80,: ) = rand(21,10)*3;
- % Normalization (if necessary)
- % mu = mean(X);
- % st = std(X);
- % X = zscore(X);
- % Y = bsxfun(@rdivide,bsxfun(@minus,Y,mu),st);
- % Parameters setting
- options.sigma = 16; % kernel width
- options.dims = 2; % output dimension
- options.type = 1; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- % Test a new sample Y (vector of matrix)
- [SPE,T2,mappedY] = kpca_test(model,Y);
- % Plot the result
- plotResult(model.SPE_limit,SPE);
- plotResult(model.T2_limit,T2);: w: U; y1 V: w, B5 g4 R9 b
2 | ]& U5 { G2 @! r" V* C
1 U" M* N7 I1 E- r, @: d1 Y w( o
(2)结果(分别是SPE统计量和T2统计量的结果图)' G2 q F! a6 R8 O, ?0 W
# a0 J" S' Q V; }5 ]9 ?
, F; k M" w x( A1 M2 C. `' f
附件是基于KPCA的降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。
/ O, L* {% ^. M& n! Z4 Y
5 I. Z+ x3 j$ [1 \# [4 t5 ?3 Z& l! { |
|