TA的每日心情 | 开心 2019-11-20 15:05 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 Colbie 于 2020-3-18 09:58 编辑 5 `2 \; v4 l; G# q
$ e, ?, {1 O. z$ T- `
核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取)
R0 X' [! y6 O9 k/ Q# }, c8 Q' h(2)SPE和T2统计量及其控制限的计算
6 U/ t' ]0 H* ^, k6 U+ j(3)故障检测
# U# [$ f% X' W4 k4 q3 }2 m- {, k" I+ w0 r* @4 I
参考文献:
3 A' D$ g" q: Q4 tLee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59(1) : 223-234.
0 I" U8 L5 Y7 U/ t. t) Q& I K" n. ?0 E7 ?3 v/ U7 d$ E
1. KPCA的建模过程(故障检测):
' [0 t9 U% Q m(1)获取训练数据(工业过程数据需要进行标准化处理)' L1 L3 z. i& D0 c1 {
(2)计算核矩阵
9 n8 S! U8 B6 U( ~7 V(3)核矩阵中心化
& E" ~) e# Q% ?8 [: P9 _+ [. N(4)特征值分解; `9 ?8 C$ h, y" H- z* F8 }
(5)特征向量的标准化处理$ A" R* T3 A7 b, ?; ]& m# b
(6)主元个数的选取/ w) D3 a ^( B: w C6 k
(7)计算非线性主成分(即降维结果或者特征提取结果)/ v7 t) r& }2 o& e
(8)SPE和T2统计量的控制限计算" Q4 q0 F/ k( z! d- g
- function model = kpca_train(X,options)
- % DESCRIPTION
- % Kernel principal component analysis (KPCA)
- %
- % mappedX = kpca_train(X,options)
- %
- % INPUT
- % X Training samples (N*d)
- % N: number of samples
- % d: number of features
- % options Parameters setting
- %
- % OUTPUT
- % model KPCA model
- %
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % number of training samples
- L = size(X,1);
- % Compute the kernel matrix
- K = computeKM(X,X,options.sigma);
- % Centralize the kernel matrix
- unit = ones(L,L)/L;
- K_c = K-unit*K-K*unit+unit*K*unit;
- % Solve the eigenvalue problem
- [V,D] = eigs(K_c/L);
- lambda = diag(D);
- % Normalize the eigenvalue
- V_s = V ./ sqrt(L*lambda)';
- % Compute the numbers of principal component
- % Extract the nonlinear component
- if options.type == 1 % fault detection
- dims = find(cumsum(lambda/sum(lambda)) >= 0.85,1, 'first');
- else
- dims = options.dims;
- end
- mappedX = K_c* V_s(:,1:dims) ;
- % Store the results
- model.mappedX = mappedX ;
- model.V_s = V_s;
- model.lambda = lambda;
- model.K_c = K_c;
- model.L = L;
- model.dims = dims;
- model.X = X;
- model.K = K;
- model.unit = unit;
- model.sigma = options.sigma;
- % Compute the threshold
- model.beta = options.beta;% corresponding probabilities
- [SPE_limit,T2_limit] = comtupeLimit(model);
- model.SPE_limit = SPE_limit;
- model.T2_limit = T2_limit;
- end2 U' @9 e0 _2 Q% C& N
& _, D; M8 d$ T" M& q
# ]/ v3 ?) q9 Y2 X2. KPCA的测试过程:
: I( d+ R: ^; }+ }) { @4 q0 ^(1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理)4 `% k- K- n1 G* y6 O+ j
(2)计算核矩阵4 i. I* s* V$ J8 W0 `3 }+ U# C
(3)核矩阵中心化+ J9 {# T0 z, N* P+ r& u3 x! f
(4)计算非线性主成分(即降维结果或者特征提取结果)+ C1 m( Z: L' E5 ?
(5)SPE和T2统计量的计算6 H1 z/ B2 S4 g# c
- function [SPE,T2,mappedY] = kpca_test(model,Y)
- % DESCRIPTION
- % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y
- %
- % [SPE,T2,mappedY] = kpca_test(model,Y)
- %
- % INPUT
- % model KPCA model
- % Y test data
- %
- % OUTPUT
- % SPE the SPE statistic
- % T2 the T2 statistic
- % mappedY the nonlinear component of Y
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % Compute Hotelling's T2 statistic
- % T2 = diag(model.mappedX/diag(model.lambda(1:model.dims))*model.mappedX');
- % the number of test samples
- L = size(Y,1);
- % Compute the kernel matrix
- Kt = computeKM(Y,model.X,model.sigma );
- % Centralize the kernel matrix
- unit = ones(L,model.L)/model.L;
- Kt_c = Kt-unit*model.K-Kt*model.unit+unit*model.K*model.unit;
- % Extract the nonlinear component
- mappedY = Kt_c*model.V_s(:,1:model.dims);
- % Compute Hotelling's T2 statistic
- T2 = diag(mappedY/diag(model.lambda(1:model.dims))*mappedY');
- % Compute the squared prediction error (SPE)
- SPE = sum((Kt_c*model.V_s).^2,2)-sum(mappedY.^2 ,2);
- end
, Z1 P* P/ U8 m0 l) S ) y/ J7 X+ A# r; }$ b
- S5 U9 M- V7 p
5 a) G! q" \5 t1 V
3. demo1: 降维、特征提取
4 t0 u5 `* p+ k8 @6 d(1) 源代码 e% Y* |! }) T8 U* m
- % Demo1: dimensionality reduction or feature extraction
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- % 4 circles
- load circledata
- %
- X = circledata;
- for i = 1:4
- scatter(X(1+250*(i-1):250*i,1),X(1+250*(i-1):250*i,2))
- hold on
- end
- % Parameters setting
- options.sigma = 5; % kernel width
- options.dims = 2; % output dimension
- options.type = 0; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % Principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- figure
- for i = 1:4
- scatter(model.mappedX(1+250*(i-1):250*i,1), ...
- model.mappedX(1+250*(i-1):250*i,2))
- hold on
- end- ]' [% J- l2 i- i2 I
6 W- z, P8 _( x% N# C# b/ X( J; K \+ I1 }$ T. e& z" N3 W- K
(2)结果 (分别为原图和特征提取后的图)
6 m7 R4 J) o. @1 M5 f( f" C" z/ }, _ G$ g" W# H+ B
2 N% _5 O4 M* \( w1 [
4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果)
: U5 g5 c7 n) ]: _5 W v. o7 \ s(1)源代码
7 E# t- F) Y! r1 j1 H- % Demo2: Fault detection
- % X: training samples
- % Y: test samples
- % Improve the peRFormance of fault detection by adjusting parameters
- % 1. options.sigma = 16; % kernel width
- % 2. options.beta % corresponding probabilities
- % 3. options.cpc ; % principal contribution rate
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- %
- X = rand(200,10);
- Y = rand(100,10);
- Y(20:40,: ) = rand(21,10)+3;
- Y(60:80,: ) = rand(21,10)*3;
- % Normalization (if necessary)
- % mu = mean(X);
- % st = std(X);
- % X = zscore(X);
- % Y = bsxfun(@rdivide,bsxfun(@minus,Y,mu),st);
- % Parameters setting
- options.sigma = 16; % kernel width
- options.dims = 2; % output dimension
- options.type = 1; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- % Test a new sample Y (vector of matrix)
- [SPE,T2,mappedY] = kpca_test(model,Y);
- % Plot the result
- plotResult(model.SPE_limit,SPE);
- plotResult(model.T2_limit,T2);: B0 D5 \! w9 s8 j9 p0 k
# g2 [) d P3 Z3 U* W
& c7 H2 |4 X1 F: R- l( Y(2)结果(分别是SPE统计量和T2统计量的结果图)
) _ ]3 t: A: B4 S0 w
4 j6 Z& |3 E, R* a6 R% k; v" B2 C8 T
$ a/ H8 h, z$ V3 x附件是基于KPCA的降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。
" Z/ v9 ?8 Y! _& \/ ]0 _# W
{; g, L1 h# w% n) p* K |
|