EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
一文读懂开关电源中TL431的运行原理及典型应用 ! d3 `+ i. p( Q" [) d2 Z
* P. d2 J b3 u
- u8 i, G: \5 \# t& e6 K
在早期的开关电源当中,组成取样的工作主要由三极管和二极管来完成。但是由于它们在参数上差别比较大,会为调试造成一定的阻碍。现如今,随着技术的进步,开关电源逐渐放弃了老旧的三极管和二极管,转而采用三端精密稳压源来进行取样和误差检测。而三端精密稳压源当中的经典,就非TL431莫属了。
) ]( T# e: i% v; w2 }# H; G6 H在三端精密稳压器内部有温度补偿的高精度并联放大器,其内部基准电压精度非常高,所有产品的典型值均为2.495V,而其误差电压范围允许为2.44~2.55V,允许工作温度范围用尾缀字母表示,C为-10~85摄氏度,I为-40~85摄氏度,M为-55~125摄氏度。所以,无论是精度还是稳定度均非普通稳压二极管所能达到的。 0 U7 w. D& h( `. X# \
在使用TL431进行设计时,我们要注意,为了让TL431内部的放大器处于线性区,要让Uka=Uref。Ika大于1mA,内部放大器的电压小于37V,其最大功耗为500mW~1W。一般开关电源中的误差放大器,功耗是不可能达到500mW的。 : G7 ?+ V: d' i+ @# `0 o
TL431的用法很多,如果将R端与K端连接,即等效一只2.5V/100mA的高精度稳压二极管。另外,TL431还可以组成2.5V~36V的可调并联稳压电源。由TL431组成的取样电路,由于其内部比较器具有极高的增益,在使放大器动作时,取样电路仅需输入4微安以下的电流即可,因此对取样分压器的影响极小。
8 G' ?9 Y4 i) _# C! J
TL431在开关电源当中取样和误差放大的典型应用电路图如上图所示。开关电源输出电压Uo由R1、R2分压,正常时得到2.5V的取样电压,送到TL431的控制端R。因为R端电流极小,可以忽略,因而R1、R2的取值可以按输出电源Uo与2.5V之比选取,即Uo=2.5*(1+R1/R2)。当Uo上升时,R端电压升高,Ika增大,光耦合器发光二极管电流也增大,通过光耦合器次级控制开关脉冲的脉宽减小,输出电压降低,起到了稳定输出电压的作用。 + r3 A' `8 y( ~% D5 _ \: j$ Z
TL431和光电耦合器的工作电压为Ui,一般取自开关电源5~12V稳压电源,R3则限制TL431的电流Ika,使光电耦合器工作在线性区内。由于TL431的比较器和放大器增益都较高,使用中常在K-R极之间接入RC电路,以防止寄生振荡。
) E- p9 h2 N5 I0 a" e6 ~
6 K V4 m6 d4 |+ G7 H9 ^% A在我们想要对TL431的电路进行检测时,使用传统的电阻法是无法准确判断出好坏的。因为三端精密稳压器为集成电路,等效电路只是示意其内部功能,实际内部电路较为复杂。当开关电源出现失控或无输出电压故障时,如果怀疑取样误差放大器发生故障,可根据上图中的电路检测TL431。Ui选择小于35V的直流电压,R1将电路短路电流限制在100mA以内,R2、R3为控制极供电调整,选择R3/R2+R3大于或等于2.5。当调整R3时,Uo能在2.5V~Ui之间均匀变化,则判断三端精密稳压器TL431完全正常。
7 h- _9 j0 H3 t6 [+ p |