|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
非易失性MRAM芯片组件通常在半导体晶圆厂的后端工艺生产,下面英尚微电子介绍关于MRAM关键工艺步骤包括哪几个方面.
5 ]+ L4 Z4 h, n: z/ x3 ]; E6 I1 ?; A+ y
(1)底部电极的形成(参考图1):经由传统图案化与镶嵌工艺形成的底部电极层需要抛光至平坦,并为MTJ堆栈沉积提供超光滑的表面。在这个步骤中,测量和控制底部电极的平滑度对组件性能至关重要,必须控制和监控金属电极的最终高度,同时也必须毫无缺陷。( @# j8 |# {! Z& \, n2 p9 [
3 p+ I+ {% q3 u. m% c5 l
: t0 q+ A; e* J8 X9 z! E7 Q, d: {; k8 Z3 n! s( L0 R8 H# ^3 J, o
图1:MRAM底部电极(BE)形成。 9 F5 J3 @ u: k# o, r! @
3 r9 t, `. _* D2 F$ ?* \' l) Y
(2) MTJ堆栈沉积(参考图2):MRAM是使用单个一体化的机台进行物理气相沉积(PVD),可以精确地沉积20至30个不同的金属和绝缘层,每个金属层和绝缘层的厚度通常在0.2至5.0nm之间。必须精确测量和控制每一层的厚度、均匀性、粗糙度和化学计量。氧化镁(MgO)膜是MTJ的核心,它是在自由层(free layer)和参考层(reference layer)之间形成障壁(barrier)的关键层,需要以0.01nm的精度进行沉积,以重复实现目标电阻面积乘积(RA)和隧道磁阻(TMR)特性。RA和TMR是决定组件性能、良率和可靠性的关键参数,甚至只有几个缺失的原子也会严重影响RA和TMR,这解释了为什么量测在MRAM制造中如此重要。5 `" c1 l9 I( q5 I
+ i$ Q) f6 [8 y( p& h
& a; y* }# N9 r0 a6 c
9 |; R; I: c( r- f6 d6 ]- i6 A# a5 u图2:典型的MRAM堆栈沉积范例。
1 i7 j0 ]: e, N6 u( V6 {2 P
/ I k+ b' R! I& {& V$ }(3) 磁退火:沉积后的堆栈退火确定了参考层(MgO下方的界面)和MgO穿遂障壁的晶体取向。通常,MTJ在高温下在磁场中退火,以改善材料和界面质量并确定磁化方向。在此步骤之后,为了进行工艺控制需要对MTJ的电和磁特性进行监控。这些是制造mram芯片的关键在线量测(inline metrology)步骤。# @) U6 y- @$ \7 P
% G1 m9 Y3 s5 V% D/ o7 D(4) MTJ柱图案化(参考图3):MRAM单元通常是直径约20~100nm的圆形柱。从光罩到光阻,从光阻到MTJ迭层的图案转移需要精确控制,从而使组件正常运作。透过非透明的MTJ堆栈进行微影迭对图案对准是一个挑战。离子束蚀刻必须保证支柱蚀刻后完好无损,并且在MTJ底部电极上停止蚀刻的同时,不会在其侧壁留下金属再沉积。蚀刻腐蚀、损坏和沿MgO暴露层的金属再沉积是关键问题,必须在此步骤中进行监控。监视和控制最终MTJ柱的高度和形状(主要是在MgO接口)以及柱的直径对于实现均匀的单元图案至关重要,这反过来又使得MRAM单元的开关分布最小化。最后,封装层覆盖了所有内容,以保护MTJ组件。该层必须毫无缺陷,并且其厚度必须满足规格要求。* J, i/ d1 S" V( S0 w5 t* |. _
; z* m. H& }( H4 v5 U2 q& R
, a8 x* T, H0 _4 C' P3 Z9 h
! G8 T" J$ S% H p
图3:蚀刻的MRAM柱(在封装层之前)。 ! {* s, Z& `' t8 t9 j9 v
" `% I' x. J) b5 N3 U- l
(5)顶部电极的形成:顶部电极的形成与底部电极非常相似,其关键是图案对准。在最终结构中使用双重镶嵌工艺、CD、形状、轮廓和深度以及任何类型的缺陷都很重要 。
8 ~6 |! N( [0 Y6 n: h
5 a% R/ J" [" g9 m |
|