|
REGRESS Multiple linear regression using least squares.
9 ^" t" F$ c4 m8 m# g/ g/ j5 _* hB = REGRESS (Y,X) 6 B) ^- j6 Z, f; h; [
returns the vector B of regression coefficients in the
# ~5 B; Q2 f4 w6 Dlinear model Y = X*B.
$ Y" [1 e- w6 c9 P5 _5 W# m
/ c D2 s; }" E5 v4 ?: UX is an n-by-p design matrix, with rows+ S* f: ~- k' t: ?' b* W5 S
corresponding to observations and columns to predictor variables.
2 o0 G' X) ^# l. O3 |/ j
8 ?5 \0 D$ n$ T; aY is an n-by-1 vector of response observations.
, d5 N& h* X- o3 Z5 t' {REGRESS
4 U( @) y+ {% T5 q' F4 c1 l多元线性回归——用最小二乘估计法5 x, x( J3 @. L2 S8 S
B = REGRESS (Y,X) ,
- B1 N" A3 K; G5 b! Q
" o4 E. u. p% O0 t8 p+ w' N返回值为线性模型Y = X*B的回归系数向量
# s9 \! V4 I: B1 \ u X ,n-by-p 矩阵,行对应于观测值,列对应于预测变量
1 h. e/ d8 m( i Y ,n-by-1 向量,观测值的响应(即因变量)
8 F. G+ ^$ C$ v3 w
0 I# R5 P! T$ t" r7 a N/ i[B,BINT] = REGRESS (Y,X) * y2 t; k: I2 p* d) X; l. `
returns a matrix BINT of 95% confidence intervals for B." o# j0 G0 C! s* N# C2 [
BINT,B的95%的置信区间矩阵
! V) F4 p; |' [2 m- u( a' `, j8 s9 [" i: G! K
[B,BINT,R] = REGRESS (Y,X)4 o4 ^' ^6 q% R2 U2 K; G8 s, [
returns a vector R of residuals.* K9 \6 C8 ?( `! A$ t, y$ _
R,残差向量% q3 A) l5 G! H2 h& _# }: I
: s/ G$ }( X* Z7 U( G
[B,BINT,R,RINT] = REGRESS (Y,X) 4 s T: n& H+ a, [# _
returns a matrix RINT of intervals that
9 V8 q* q& q8 t4 g5 _/ u8 m* r: e ]9 Dcan be used to diagnose outliers.
6 h. T) m6 f6 K, ~% y
. I6 j8 B: a5 J9 C. w/ RIf RINT(i,: ) does not contain zero,
! a, H/ l# C3 a. Z* P- O
2 E' v) L$ b1 a& @4 ^then the i-th residual is larger than would be expected, at the 5%! A: B9 t" S/ o
significance level.
3 T C: \5 S% {9 J* T0 n, u6 b E
This is evidence that the I-th observation is an outlier.
8 d! ]. {" n( D. S+ L3 a) n: p$ U) M5 S& |! Q4 a6 N
RINT,区间矩阵,该矩阵可以用来诊断异常(即发现奇异观测值,译者注)。- ]* N- y) l( m" [- i, x- S3 v
如果RINT(i,:)所定区间没有包含0,则第i个残差在默认的5%的显著性水平比我们所预期的要大,这可说明第i个观测值是个奇异点(即说明该点可能是错误而无意义的,如记录错误等,译者注)% [! _6 ^6 V/ b+ D& B
! J1 S9 K: w3 N" y: H, q' g" E5 t4 a[B,BINT,R,RINT,STATS] = REGRESS (Y,X)
* d' B2 B A4 u9 R2 ?: s4 o' treturns a vector STATS containing1 w, \. d+ e' `) @/ c
the R-square statistic, the F statistic and p value for the full model,and an estimate of the error variance.( z( H: e4 D6 [+ [
0 f1 I* {! E2 ~/ L% F
STATS,向量,包括R方统计量,F统计量,总模型的p值(还不清楚)和方差的一个估计(还不清楚)! u y1 n1 A) ^- s; @
4 X/ V3 [5 @( N+ O8 I- K
[...] = REGRESS (Y,X,ALPHA)
+ G& W9 C* M: j4 }$ \uses a 100*(1-ALPHA)% confidence level to compute BINT, and a (100*ALPHA)% significance level to compute RINT.
# i* z& G) ]- I- J用100*(1-ALPHA)%的置信水平来计算BINT,
9 n6 Z! l' T; j- g用(100*ALPHA)%的显著性水平来计算RINT% A5 O7 U* _* y5 x3 z3 H" g3 C0 N9 S
' q0 d2 A0 r- E& j7 ^- q
X should include a column of ones so that the model contains a constant
`9 L; S2 ~- V8 w* K0 N* lterm.
8 t- J, \2 w5 l4 bThe F statistic and p value are computed under the assumption
) @- P k- Z* P% Kthat the model contains a constant term, and they are not correct for- B0 D, y( f8 d" ?! y5 d9 A
models without a constant.
# [; k+ j2 [' D+ A8 B7 K& D! @The R-square value is one minus the ratio of! U! [7 f, l3 F
the error sum of squares to the total sum of squares.
9 H6 P: f- e+ [7 cThis value can
f7 G- F3 d2 l1 S& a$ {5 ?! T% Xbe negative for models without a constant, which indicates that the model is not appropriate for the data., l6 Z; u8 |6 ]- J. Q+ } f
X应该包含一个全“1”的列,这样则该模型包含常数项。F统计量和p值是在模型有常数项的假设下计算的,如果模型没有常数项,则计算得的F统计量和p值是不正确的。The R-square value is one minus the ratio of the error sum of squares to the total sum of squares.(此句无法把握,请高手帮忙~~!)若模型没有常数项,则这个值可以为负值,这也表明这个模型对数据是不合适的。(即数据不适合用多元线性模型,译者注)9 U) V5 f) j% l; x
. _7 k% v( w ^If columns of X are linearly dependent, REGRESS sets the maximum4 _) m3 O( c$ [; Z
possible number of elements of B to zero to obtain a "basic solution",
: v' ^" u9 [: s- L, rand returns zeros in elements of BINT corresponding to the zero elements of B.
& ^; q& L2 A! v4 Z9 Y. m如果X的列是线性相关的,则REGRESS将使B的元素中“0”的数量尽量多,以此获得一个“基本解”,并且使B中元素“0”所对应的BINT元素为“0”。& H+ s% W) m% ~2 i
) B: a& Q! R5 T. y, w2 @7 V
REGRESS treats NaNs in X or Y as missing values, and removes them. REGRESS2 y- a7 r- j( A1 S3 t
将X或者Y中的NaNs当作缺失值处理,并且移除它们。 |
|