|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
曲率公式:
( p4 \/ ]0 _$ o# M) C
0 x- q$ d! E) u- \6 s
注意:
2 u+ D# X2 U- a①曲率半径为曲率的倒数5 O/ v' \$ I3 l
②如果是离散点,先用polyfit和polyval拟合出曲线
% n8 n8 J$ k0 D5 [) f, j- d6 H* U, s4 b& z
程序:; }% I% v5 E) ~8 s7 D
% C `- g n' k6 @7 S- ~* e
/ x6 x& r ^- |7 w8 o7 h$ w1 j! S
clc; clear all; close all;
+ M3 K j- `' i, {x0 = linspace(0, 1);
! S" ^ L Q+ z0 J6 \* |% ?7 Ly0 = sin(x0).*cos(x0);1 J- w' M1 r" f; |% p
h = abs(diff([x0(2), x0(1)]));
2 |; p. I& D `1 \, o/ h* L% 模拟一阶导5 \. S7 }7 B4 z: [. v$ D& ?8 X) Q
figure; box on; hold on;; n" H( t6 Z+ T3 [+ M6 ~# s1 m
ythe1 = cos(x0).^2 - sin(x0).^2; %理论一阶导
+ X+ e& n0 H8 eyapp1 = gradient(y0, h); %matlab数值近似
* e' w$ Z. P7 n B/ r$ I3 l; splot(x0, ythe1, '.');
6 |$ r' V" d# `2 J1 V$ bplot(x0, yapp1, 'r');, [6 P1 D7 d( r+ z( }6 |
legend('理论值', '模拟值');& t+ S! Y5 Z! U1 h( w- g0 D# c
title('模拟一阶导');
0 ]# X- W( V& [% [9 W' `: k% W% 模拟二阶导
) \5 k0 S- t/ H# p ffigure; box on; hold on;
5 f2 S* X- w5 U8 d( gythe2 = (-4)*cos(x0).*sin(x0); %理论二阶导5 w4 s4 b1 b: g! _1 m! K6 ~
yapp2 = 2*2*del2(y0, h); %matlab数值近似
; R9 `7 F5 z, Mplot(x0, ythe2,'.');
( i) d# R5 Y* qplot(x0, yapp2,'r');: t" W5 t; G1 N4 z2 k
legend('理论值', '模拟值');6 J1 P+ c, \( |" P. _+ k0 a
title('模拟二阶导');; D. k( Q, B3 k/ h& G
% 模拟曲率. c( B4 R+ l) s. R
syms x y5 j0 _) ~+ g; `5 |0 `
y = sin(x)*cos(x);; \$ o2 y7 i. |: N- f1 E
yd2 = diff(y, 2);+ v: X* v) R- \- C+ @6 ^
yd1 = diff(y, 1);/ u# K. w w6 W- |
k = abs(yd2)/(1+yd1^2)^(3/2);& M4 s2 z" u8 U, p9 ~
k1 = subs(k, x, x0);
9 @+ F4 v, h# O B$ _4 n! kk2 = abs(yapp2)./(1+yapp1.^2).^(3/2);, ?6 c4 X( n2 \4 M0 H
figure; box on; hold on;$ V$ ^: S5 @; s( @1 b
plot(x0, k1, '.'); C0 A5 Z& a; O: b0 P7 e
plot(x0, k2, 'r');
$ g7 X& l X+ Elegend('理论值', '模拟值', 'Location', 'NorthWest');
# m4 Q' \- G# e2 o9 Z4 ttitle('模拟曲率');
6 ]3 q2 m P# D3 w, J: }5 s3 i
) I1 Y+ q1 G1 D0 \9 M! i! g' P: J. @4 s2 H2 [- V4 u4 c2 k0 y
8 F) _6 [: x$ N
- @9 e% E1 B. q6 f* p
+ ]& s" v5 c6 W% a% f2 a
# B( r4 g- |7 Q# O6 s8 E9 e
2 I3 Q" B4 w: t' d8 X# Z
0 |( a9 o4 w6 T# q
: J7 S5 Y) ]3 [ |
|