|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
4 P! R1 M' B, u* }
函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数! v- a# L7 h0 G% i* P' `7 E4 l, V# C
4 J$ h) L! U; m7 m/ Y. K
function x=besselzero(n,k,kind)
- c# n, o* w' g. u9 L%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 s: }6 Z+ D% `6 p% c%2 N( r8 u0 X1 i) p
% besselzero.m
r4 j& {7 r2 i0 ~' U( [%' r) I" `4 [9 b7 V% M4 j7 S
% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)( J: Q9 K! Q. ~
% using Halley's method.& F9 }1 O% H2 y
%3 Q3 C% C3 e0 O! [" C
% Written by: Greg von Winckel - 01/25/053 ^5 j1 f7 g% ^1 V+ m
% Contact: gregvw(at)chtm(dot)unm(dot)edu# p' m* l6 S3 k, A% k
%
% M7 w4 m9 O0 O; `" X+ ~8 }+ B%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 c/ f0 e0 E) u; j$ e: Wk3=3*k;
; F8 l1 s0 O# m! E) vx=zeros(k3,1);1 Y5 O# c" m. W# j" s
for j=1:k3& X7 x M6 A6 X
, h. u8 p% B8 d4 d U6 b; Z
% Initial guess of zeros
3 s$ w$ J" v) G x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;
! m$ Y6 U O0 X3 ^, {
$ J4 i9 @. T) L8 ? % Do Halley's method( F; |: h0 ]+ s' S6 L, b1 R9 ~: J
x(j)=findzero(n,x0,kind);8 x( y" m7 @- i
if x(j)==inf6 n+ U+ q1 y% s6 n6 V% r
error('Bad guess.');
/ T! p7 _9 s2 c end
7 I* m1 i# [7 n6 D' D 4 r" x+ N" B% ~: m& a
end! X. c2 j2 c" a+ Q, U
x=sort(x);
6 V& R) Y% d! v, ^! y6 w. S( I% Ndx=[1;abs(diff(x))];
) h5 R; P7 B) b" H0 }( R j' Vx=x(dx>1e-8);
4 I8 V! K: {$ _: [0 c# Wx=x(1:k);
9 P6 v: G2 T% Cfunction x=findzero(n,x0,kind)
m, i3 }+ O! E. V1 Jn1=n+1; n2=n*n;
$ j* P1 M8 ?* w8 y0 P1 m% Tolerance
# `: P2 {( T1 N6 L# H+ Ktol=1e-12;$ e7 m& A u, g; h# p0 V( v( J; c
% Maximum number of times to iterate
8 f4 A9 D+ N% u" IMAXIT=100;
/ ?3 t$ o5 K9 B$ u% Initial error
& L0 A$ T& q$ S. U0 c+ ^" {& verr=1;
/ \0 `; ?; ?9 riter=0;
/ f$ E) e3 P4 s6 z" awhile abs(err)>tol & iter<MAXIT
" G1 _6 @* c: m $ r( `1 Z6 L: r3 l
switch kind: J/ H+ L1 | ]* T! y8 E2 p0 u
case 15 Z7 F! j" h# ?/ j
a=besselj(n,x0); ; A$ R% Y4 ~" U) \ ]2 P; L
b=besselj(n1,x0); ) w3 [7 P* }8 N$ H! `
case 20 q& U5 W3 C. F1 {+ a X
a=bessely(n,x0);) O9 Y* F b3 F/ _
b=bessely(n1,x0);
/ C0 Y0 z7 v+ D6 G, K& r end
9 g1 I1 R5 Q; K " Z5 \' ~; p1 h) i; w! | ^
x02=x0*x0;
) x% L6 z3 X w. `
8 z# `6 P# h4 x) t, t) H* A err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);
8 c: W7 f1 o [5 ? + H; h; W) ]' n
x=x0-err;0 B$ T$ s& T7 q. v
x0=x;
) G9 h0 E K7 _0 m l iter=iter+1;# b0 Y" H) w5 [9 S# n3 I6 P
, J# N, R" G) y
end8 I7 N8 F( U. p+ r, ]1 Y( m
if iter>MAXIT-1
4 G0 D1 S4 {% N# B/ ^( a warning('Failed to converge to within tolerance. ',...
) h, @( |+ Q& ~7 j 'Try a different initial guess');7 r4 A1 r# t% L8 K1 f2 ]% I0 F; `
x=inf; . B# _) v: \! {8 h! [( H! b2 R1 E
end
( l4 V, C' I( `7 l) V8 T) \* g+ I8 }5 E9 I, Z
|
|