|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
4 J; u/ g+ c8 z6 ]0 P) ?: o1 e函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
0 |2 X) u: c: W5 O2 Z# a( M6 `* u! ^" l' }( H! v+ `( g
function x=besselzero(n,k,kind)5 H& H. e9 Y! j, x3 {/ ]* l( r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%) J1 i! D X9 C
%
# n$ [7 R5 q; L9 R3 d1 P4 D( h) _% besselzero.m
8 H: E( y5 F+ C5 |; M! u" R2 g* V%8 ]' q6 a! `6 U3 y' q1 c
% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)
% ?1 q$ H+ v- r8 d( ]/ [% using Halley's method.
; I3 t+ U/ V; r, n Z%; a; B+ Q+ o- p1 \( Q
% Written by: Greg von Winckel - 01/25/05. S3 p$ @7 O- |5 M6 Z
% Contact: gregvw(at)chtm(dot)unm(dot)edu
! C! ^; e$ s( A%2 h' C' Q) A* d/ w( I# q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 R$ T# z2 t: H& r% y M/ ^1 ?0 G
k3=3*k;
/ S* I' e! e/ b! Q! z2 ]( I% Ux=zeros(k3,1);
1 c# K6 r, G. `for j=1:k3
% f) D' U+ v6 p4 Q8 H! D 2 X9 d# r6 G1 _6 [
% Initial guess of zeros
! e$ g7 a J* p& K' X% {4 w1 ]& h x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;% U4 I( M# G( R0 c3 C
8 [, d4 [3 f& R( @
% Do Halley's method
2 s# V6 B5 v J! u' \3 Q x(j)=findzero(n,x0,kind);& b f( M9 h/ f
if x(j)==inf! z8 Y# a; r: Q4 o( e) @0 {0 j8 _/ b
error('Bad guess.');
9 T! A+ F2 ?! B( d* f) n. p1 C end4 m' g k. S1 }, E8 a4 r/ B
: J* X4 r2 g6 dend8 q- X( h8 k+ I9 m! P8 X2 X8 Z
x=sort(x);
. v5 u; |9 o3 `1 N, [0 udx=[1;abs(diff(x))];6 t/ F0 J4 `* N# R: V6 j: M: d
x=x(dx>1e-8);
3 U# K/ b' u9 w, ^( c5 px=x(1:k);9 ~( n+ G- F( L& x# e
function x=findzero(n,x0,kind)
/ X! f! Y, x2 M% l, M- Xn1=n+1; n2=n*n;$ B, ?$ ^- w! h! A# j5 [
% Tolerance
. @1 r: M5 K" ~4 S5 ^: Rtol=1e-12;
0 j6 [; F4 O1 }9 M4 u( s9 C! h% U% Maximum number of times to iterate O" G$ e. L3 ]
MAXIT=100;/ [$ Z( J, w* ~" e& c
% Initial error. s" z O: L! ? V6 f/ I6 }( K
err=1;9 l2 b0 L- @- j" `
iter=0;$ n4 |. e3 K% e$ C
while abs(err)>tol & iter<MAXIT4 Y, `( ]4 L, i
- q5 G" [' B/ X2 y$ r! P switch kind
& B) r# I) V* O* r* y1 \0 u case 1
3 ~3 Z- G6 G5 `1 D& I2 ?! p a=besselj(n,x0);
1 ], _& `% H9 j b=besselj(n1,x0);
( M. ?+ D$ J% e% @' g$ V$ ]7 e" } case 21 _+ g/ E0 _" x9 P4 q9 g& m
a=bessely(n,x0);" N. b. H8 I6 r/ t7 M9 |! o
b=bessely(n1,x0);
& b' p3 r' ]) r; z! ` end( }, K1 G0 O; S: e
' {/ I6 c+ q9 U- F. r x02=x0*x0;, S& E) c7 f0 ]
3 K; a9 P9 u3 c% \ err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);2 N7 F0 z/ a; @" t1 T$ f
8 N2 d2 ]6 ^8 \4 t& ~/ v6 ?' f3 G
x=x0-err;
2 N, H) a" _5 h4 [& _. z x0=x;& S! r6 k# S4 B. N. x
iter=iter+1;
6 Y+ b+ L; ?' U) l" }
! ^( \& u- a1 e8 h' L9 ~& F" x1 dend
5 R8 ?1 t; h% u- \- _0 Cif iter>MAXIT-11 Q9 Q4 u" l& K0 Q
warning('Failed to converge to within tolerance. ',...$ _. j- c- v- U! d) F
'Try a different initial guess');4 H/ q; u# M, w
x=inf;
" ]$ ]$ T6 w N: {$ Tend) U5 i0 ^' e; }$ g, |5 ]
2 r8 u w1 Z# F4 @# d2 @3 G" ]! t7 g
|
|