|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
序列 x(n)的奇偶分解的公式为:2 G/ B" w' v3 U
8 [' U- O8 v% ?; n$ f. `+ i0 z5 A
* L1 ]% u2 q' s g1 s( I" Z
9 K9 }1 j) `" m" B5 \9 s6 I& m# n' X
# A- n2 E ]$ s编写一个序列 x(n) 的奇偶分解式 xe(n) 和 xo(n),需要考虑的问题是序列长度,下标的变化。8 S! ~1 ^( a3 P2 H
) D3 y' U- L2 ~! }这里必须做个声明,下面的程序中用到了前几篇博客中的几个函数,这里给贴出来:: e' k7 B7 d% @9 V: n! i5 a
/ @% u# y5 E4 \信号相加:7 ]3 `# I$ b- a( p5 G; b! I
$ X" c) C- z; O3 H$ b
function [y,n] = sigadd(x1,n1,x2,n2)6 X7 }! c$ D2 I! {
% implements y(n) = x1(n) + x2(n)8 i( E. p5 ]& x9 e. f' i
% [y,n] = sigadd(x1,n1,x2,n2)
) V& f& _* Z$ N%____________________________________
7 t, M) a ?2 y F0 g8 x% y = sum sequence over n, which includes n1 and n2
: c& X# E3 _* n/ ?" M" E& K4 c% x1 = first sequence over n19 x1 s8 u* p2 F5 T, ?
% x2 = second sequence over n2( n2 can be different from n1); n; p# W5 W9 }1 S0 n6 w
% G; V& i! W$ [: g" X
n = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n): E# B3 G( W- b6 l0 K
y1 = zeros(1,length(n)); y2 = y1; %initialization" J5 ^1 f' h5 ~! T. ~& L
y1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y1
/ o, `5 }, u0 K' L2 ?. F* h1 h7 xy2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x2; %x2 with duration of y2( Q) h9 ?4 ]9 r6 k$ {2 w
y = y1 + y2;: x8 U+ {6 i, e, @% F
9 A1 K! n+ C1 G' ^/ ~( O
8 O/ ~4 [' J. K. |+ `# l6 g1 X
信号移位:
. `) ]* u3 f, a- S3 [* B# _/ g0 w
* I X3 t9 j4 mfunction [y,n] = sigshift(x,m,k)3 R( X9 ^- m6 P3 a6 f
%implements y(n) = x(n - k)/ ~7 a5 p0 b* }# S
%_________________________4 y! K$ F& K. u* G% r8 [, ~
%[y,n] = sigshift(x,m,k)
+ v, J) G1 j! j%. @1 a/ a$ e1 p( S( }
n = m+k;" }+ b4 M: J; w& n0 u& _
y = x;4 R" H4 N/ ?/ j: _ M% V6 `
7 v$ M$ ]9 P! J* _
. s6 r4 V, q) h$ a7 v# q* g单位阶跃序列:! w- b5 D1 L3 P" w
! |/ K# H: r' A8 P4 y" G- Bfunction [x,n]=stepseq(n0,n1,n2);- m' B' Y5 g, C0 K. M* P
% generate x(n) = u(n - n0); n1 <= n <= n2* h+ J0 A j" {/ X" K; Q
%_____________________________________________' M/ y4 l7 k1 x' W# m; S0 o; `, u
%[x,n] = stepseq(n0, n1, n2);$ b8 D+ Q% d9 h) l
%7 g0 e' F5 u2 ?2 }' N$ {( h
n = [n1:n2];( \4 B* Z8 F, [8 I' r S
x = [(n-n0) >= 0];
* b+ u! y7 G; ]. m& e1 z' o: R: L, I, Y1 h
3 C( E; P& P0 n$ z' z) p% p$ e$ z3 L$ g3 K下面给出函数程序:
6 Z1 L" N! g3 M2 v; I3 @- J, ~ z. r
function [xe, xo, m] = evenodd(x, n)0 C$ S9 f! I0 Q: w Z7 V! G1 Y( P
% Real signal decomposition into even and odd parts
; [. s3 ?% Z& y5 }* c5 z%__________________________________________________! \ T8 y- x- O3 N$ A* I4 u6 k$ p
%[xe, xo, m] = evenodd(x, n)9 D% {; J5 A4 y' U! |( o
%
- F6 S$ U) O X! V( a fif any( imag(x) )
) \$ K3 L: }1 z1 y5 q error('x is not a real sequence!');
/ [, r- G$ ~& E2 T% p& a- Bend
8 w: d/ f% Z2 `: x1 b$ r" n0 x C0 }
[3 B- @" R6 k+ m5 H% Ensure m of xe and xo7 p% I( v5 }- V; ?
m = - fliplr(n);
8 G/ V5 e G2 J: h0 l' a; ~m1 = min([m,n]);
' Q; q' [) D0 D9 I/ ?" N- _m2 = max([m,n]);
# I ?* y8 t. e$ x6 K2 Am = m1:m2;4 O7 b ?$ K8 N, i
' u# f. P5 o* K
% Ensure x over m' x9 d% p/ \/ N: }3 I! z
nm = n(1) - m(1);$ u' l' n F5 ^3 {
n1 = 1:length(n);( e$ {3 H8 _% O; R t
x1 = zeros(1,length(m)); % initialization
, j; `- F* l/ j" h) px1(nm + n1) = x;- @4 h! o5 n4 P+ A/ r' g
x = x1; % new x which enlarge index n% ?2 r; ~3 y+ p, J0 I( n. q
5 F4 g$ ^* [1 @. ~: ?8 a4 T5 @% xe and xo7 U" x% n9 p k& c, Z: ?
xe = 0.5*(x + fliplr(x));- z& C/ x* N& J$ n5 @( t
xo = 0.5*(x - fliplr(x));- Q' Q& a* r2 L+ I5 n1 {! {6 Y
, \9 I: O% I, W
6 |( P$ y9 C+ P* |+ K( ?3 k% ~序列和及其位置分别装入 x 和 n 数组。首先确认是否已知序列是实序列并在m数组中确定偶部和奇部分量的位置,最后将所得奇偶分量存入xe和xo数组中。! |( G& L& m, u* l! l" a
$ [/ B" }' ~3 u" b* n) |下面以一个实例来验证上述函数:4 U4 [+ h' i6 Z" a" y# V
. ?2 A) F: K4 S
' k! P1 N8 \' w8 s! L2 u
, X4 R* D' Z/ O1 m将x(n)分解为奇偶分量。6 _. k/ O" l) ]! N% U
( V! _ f* j2 W. p
clc* Y8 u- a* _; n4 s0 t8 n$ G; w% \9 B
clear
4 @' g* r. A6 L2 `' [close all3 x4 @) p/ \, L9 E2 O
+ H, w( e3 o+ r/ O
n = 0:10;" {* ]# T( r8 s1 l) q
x = stepseq(0,0,10) - stepseq(10,0,10);! b& z+ E( M/ u6 G' Y0 z3 `* O' \0 N# o
[xe, xo, m] = evenodd(x,n);
. Q; |; C* F3 Q O9 ~# J$ L# p! y7 [2 O% T7 K
subplot(2,2,1);
3 @2 `( J: H3 [+ K k% Y9 Sstem(n,x,'filled');$ e2 v# p/ b1 \5 ^* t0 |* o
title('Rectangular pulse');6 q1 Z0 ~1 Z$ ]. ?
xlabel('n');ylabel('x(n)');
* L2 P$ B0 \& z& ]axis([-10,10,0,1.2]);
' h6 m: C- v" b. A' N; v' r0 g7 Y v8 ]5 c7 r# d6 x0 P, f
subplot(2,2,2);. {9 v8 X, x) q3 F p6 j
stem(m,xe,'filled');& k7 k% A7 b% e
title('Even part');
x, A# R l% G, I5 c* m# L( hxlabel('n');ylabel('xe(n)');
( A* r( k' _6 I0 U( b' Taxis([-10,10,0,1.2]);1 ]) X0 |9 j* z& S
; b7 L9 d, A2 B' s& hsubplot(2,2,4);6 i# T" _' J' h* }
stem(m,xo,'filled');7 N/ Y2 O6 b1 L+ F8 L) v+ [
title('Odd part');& B* ?$ ~; M$ ]' v% O: q
xlabel('n');ylabel('xo(n)');/ ]5 H4 x" ^/ {% n$ o! o
axis([-10,10,-0.6,0.6]);! g' U0 |3 y0 d( s
5 D& E4 H6 J( i% G5 E: P; m* a
) N- L6 f) E; z7 U$ }
7 x5 w: o, M; K7 ?事实上,这篇博文到这里已经结束了,那我还想看看序列x(n)= u(n) - u(n-10)的合成过程:) L ~2 U7 ^/ g- m5 n5 M
3 F7 u3 b) p7 }0 g; c- N" G
clc
! G B ? C( D4 yclear
+ Q8 p% c" G" v- A2 Aclose all
1 w7 @$ u! w7 D/ i" U
5 I" t. f1 T% z% A; k[u1,n1] = stepseq(0,0,10);* b% ^3 l5 C. t b A! T0 s3 H
/ U e' i! {( K8 D+ X
subplot(3,1,1)
5 F/ N& ]2 d5 |, F' F$ P' c; z2 S" Zstem(n1,u1,'filled');
- {) u: F& h; a! O5 X8 Wtitle('u(n)');0 u; h5 G/ s0 H; v3 E4 u
ylabel('u(n)');xlabel('n');
6 w/ J4 I0 _4 r$ r x- T6 Kaxis([-10,10,0,1.2]);) X7 R5 n- J9 a6 s, t- i! O
* {! f! ?% U6 m* @+ G5 W1 Y[u2,n2] = sigshift(u1,n1,10);
! o7 V8 U& P: X0 p7 \subplot(3,1,2)4 e F$ G: F0 w8 y+ S
stem(n2,u2,'filled');
8 b4 H% p4 u7 N/ L e( Gtitle('u(n-10)')' ~( C3 I9 O* n0 o U7 y3 f
xlabel('n');ylabel('u(n - 10)');) o' N1 K: N& i. h
axis([0,20,0,1.2]);
; u) @& r' V) U, E* W' z" f
& u+ h& k; R# Q[x,n] = sigadd(u1,n1,-u2,n2);1 \7 g$ |# D: b: ^
: ~& l$ i+ E5 z( X esubplot(3,1,3)! S- e7 @4 H% D$ X
stem(n,x,'filled');* \( z8 X# ]! F: y' B! C) O
title('Rectangular sequence');7 g5 N% i4 u% O/ K8 E: c6 u
xlabel('n');ylabel('x(n)= u(n) - u(n -10)');
( r8 h# Z1 Q8 n. O- Y: _axis([-10,10,0,1.2]);$ Q! y6 S- r. ?" k0 P
) ]; s+ q% S& g# M, s2 ?
; H$ _4 T V3 E/ ^ U5 K
6 _; ]8 d$ q' l" }7 X4 n# K2 N+ X" o/ I* F& ~& ~; x
|
|