找回密码
 注册
关于网站域名变更的通知
查看: 400|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
' T; T) b) h: Z! W0 s1 [ 3 r8 {6 Y9 n/ w$ n# i! X: \: m1 d

$ n, s$ r: M) }2 sNSGA2的过程为:7 [, E$ Y$ u! Y8 h  s) t# `# X5 r
) k" K6 c- z  m6 |1 r% i$ o% w
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
+ [" m  ^6 R5 \: d0 F
; S, c; R% q& l: X% N+ s4 d1 a2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
, \' |6 y! L: G- k) s/ n- I# q6 A3 m9 F( o6 Y6 c- I
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
, F/ y! ^& p2 g
6 ?  d; P7 ]- P) Z下面是完整版的代码:
. a- N$ n9 T' E8 T9 V* I" H4 F9 H% `3 c% S+ C- N
①nsga2-optimization.m
) Y' g2 y2 u( G* K# _" _
- T2 C: X- |3 W' N! A5 ]function nsga_2_optimization
, E0 l6 W0 a5 r8 a* O%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 a6 v; t- F3 W7 I. X%此处可以更改
3 q2 N$ `0 s/ w4 `0 w%更多机器学习内容请访问omegaxyz.com% @5 r5 \6 [6 }* y1 E8 f' r
pop = 500; %种群数量- F# i+ z$ k4 _, \8 Q( R
gen = 500; %迭代次数
) `& b$ b( d- U2 yM = 2; %目标数量( S7 v& P9 v- K7 ^
V = 30; %维度
; b3 m1 z$ @) M5 A( R9 vmin_range = zeros(1, V); %下界
( u# b* Y! r' a; Y9 }max_range = ones(1,V); %上界
0 I3 {- u; V" e& X9 V) W%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0 \$ B9 o9 z& a, ]- ^- q. D
chromosome = initialize_variables(pop, M, V, min_range, max_range);
/ l; E- ?0 u" s! rchromosome = non_domination_sort_mod(chromosome, M, V);$ x  Q$ H& F9 O

- E; i  J: z+ a  z4 X; B" H& z/ wfor i = 1 : gen
" @4 P5 ^7 y" }    pool = round(pop/2);
1 l  H2 F* U8 f* D7 ?% R/ Y0 T    tour = 2;5 n: A  o7 m. x
    parent_chromosome = tournament_selection(chromosome, pool, tour);! `( n3 m. o8 E. Y% v; k1 V4 h$ ?
    mu = 20;
- e4 K! W3 i" r( x    mum = 20;
" M1 R6 L: U1 Y" I4 f    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);/ z, ]& J+ D. U2 }* M. U4 r9 |
    [main_pop,~] = size(chromosome);
5 Q4 @$ C! D1 I. l    [offspring_pop,~] = size(offspring_chromosome);# i/ Q( h+ T0 U, ?& i
    clear temp  O5 L, V8 r+ _% H* g* T2 T
    intermediate_chromosome(1:main_pop,:) = chromosome;# A) @* ~0 U' b$ @
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
1 S9 ?# ?- N& R+ o  [$ }5 S    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);3 Y7 `2 g. x" M& a  R0 m; Z, W7 k
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);3 h- `$ g/ m5 Z: ^' c9 ]2 _
    if ~mod(i,100)/ x" k9 {( v, \7 \
        clc;
& I/ R: _4 a; E        fprintf('%d generations completed\n',i);
3 I: `( h8 G. P: E! G2 C, R7 M7 D& x    end7 `8 J4 S& }  L+ \6 G$ K
end
( H) H, L5 g* }9 b
; p4 M) a' h% [9 ~if M == 2# \+ X' t/ J% {: n: Z5 o
    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
2 F1 g, P" }6 r, A4 ?# Y5 `  p    xlabel('f_1'); ylabel('f_2');
' S; j5 w  x+ f& f# a4 I5 F: R0 F    title('Pareto Optimal Front');9 `% k- m( M5 e
elseif M == 3
% b8 h, W' _( y    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');9 F/ G$ T7 q% _6 u& [) J% P
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
5 t  f1 Q. x" l' m( @% R! X! r    title('Pareto Optimal SuRFace');' G$ R6 L( W: {1 u8 j: l7 Y
end2 s9 z0 O% M$ l1 d0 d6 L
2 m5 N6 Q' W) Z" W9 K0 _

/ A- l' l" P9 i4 H$ O7 L: a2 _7 H& Q3 q4 ]②initialize_variables.m
1 \8 I: p4 }  F! e- v, U9 A0 @
# ~" S1 V6 v7 M8 E+ R7 K+ _function f = initialize_variables(N, M, V, min_range, max_range)
5 S& ^' K  y0 p* wmin = min_range;* i, T. v: y+ [3 _& l/ j
max = max_range;. I: s1 \' Y4 p
K = M + V;+ }( I! ?" s6 G9 `* C. o3 L
for i = 1 : N
: I( M$ n. S0 f# |8 }) t( n( w    for j = 1 : V
6 k4 K- a( I2 K0 a* l' b4 d        f(i,j) = min(j) + (max(j) - min(j))*rand(1);5 T2 A. E( l. o& l; `2 K
    end" K- `7 r2 H8 n, D1 l& L
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
  i5 R! W6 Z% A; i- H4 fend+ \7 T2 J. h2 e

- F. C; d) A; S" R3 d( k
8 r- @6 Z* ]; e  p: s# k③non_domination_sort_mod.m
1 _+ z( Y+ G8 H) ?5 m- U) \( V/ v! f, ]( d* v
function f = non_domination_sort_mod(x, M, V)
& B: E! n3 M+ R+ k! ]+ [3 E[N, ~] = size(x);
& r* w2 y2 U* R1 \% |( _clear m" c: m* Q3 r' }- b: |0 i- L
front = 1;5 B4 q! N* a3 E% v5 o  @% n9 ?
F(front).f = [];5 |$ D9 f. x4 K4 B" }
individual = [];
2 C% T8 o( V% n; k$ q# q: k+ |, K+ d' T  }
for i = 1 : N: j9 D, ]. {# f7 W% R
    individual(i).n = 0;
; {/ y7 s) T9 q8 F% W; w    individual(i).p = [];
9 K0 o, j# V" f$ P9 T    for j = 1 : N
* I$ g# D+ J5 J        dom_less = 0;
) t0 q5 i' u: I+ X, c        dom_equal = 0;
+ O, }( Y/ F9 Z4 Q        dom_more = 0;
+ e) _5 x  C! Z8 J        for k = 1 : M4 D' e8 _9 d: }$ H  Z3 W
            if (x(i,V + k) < x(j,V + k))( T* {- |( ]0 m- _. s% I$ L
                dom_less = dom_less + 1;! Y8 {% O) h! _: v& e) U, g! h! G
            elseif (x(i,V + k) == x(j,V + k))) l+ h' E; I; ?. W- A
                dom_equal = dom_equal + 1;
; k2 ~+ p3 \' W/ L2 H9 |            else% b1 a& h; L8 F7 p9 {  a
                dom_more = dom_more + 1;
/ y! c0 i$ H, P' Z1 q) i; w2 B            end
0 K4 Q7 ]' `* B4 T* Z/ ?4 M        end" V0 }$ A  f1 A! n; d% q* {% U
        if dom_less == 0 && dom_equal ~= M
) f* M6 n' B% |) [            individual(i).n = individual(i).n + 1;. P, b9 l' I* l6 f( |/ M
        elseif dom_more == 0 && dom_equal ~= M( F% }, |0 [) u  t5 I) @2 G" o
            individual(i).p = [individual(i).p j];
% g& B% b: e7 ^# P+ v% P        end0 e( c% B; v2 i  X7 i
    end   
7 [0 H4 i! Z# Q+ s& M& L    if individual(i).n == 0
! D  b+ x0 O+ T# U. r        x(i,M + V + 1) = 1;
1 h( f5 u6 ?) E) i* r: d- p        F(front).f = [F(front).f i];1 o& o/ o. `4 W5 n: j( ~
    end7 _* d! v2 V/ h- M! ~: M
end
1 R4 {" S, Z  t0 P: t$ ?, f% }% Q( n. h9 x" V9 x% S
while ~isempty(F(front).f)
" _$ d" ?2 p/ q8 T   Q = [];$ K- j/ q6 E6 J
   for i = 1 : length(F(front).f)& d$ ^' ?0 v" W3 M; A8 }+ H
       if ~isempty(individual(F(front).f(i)).p)
4 W2 b& [, c% m            for j = 1 : length(individual(F(front).f(i)).p)
, g0 G( D' d, D5 R5 E0 m) V                individual(individual(F(front).f(i)).p(j)).n = ...! ^$ k1 j3 ]; s4 S
                    individual(individual(F(front).f(i)).p(j)).n - 1;7 C, X9 }+ k6 g6 ]
                if individual(individual(F(front).f(i)).p(j)).n == 0
' M- ^. A# y- L, e                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...  z% A9 R5 {+ z/ Y" B1 i
                        front + 1;4 ], a9 I6 O0 O9 t$ n
                    Q = [Q individual(F(front).f(i)).p(j)];
: L  p  k* O1 e                end
# z3 C5 |) P" C' C% D            end
. I! p; R0 M4 S! h) ~       end: Q: H) I0 j9 B, Y# c) X1 |
   end
# ?, `) {' M+ O2 D* M4 q# m   front =  front + 1;- [& o/ R9 S- O; S2 Q' D( z0 Q
   F(front).f = Q;4 Y: ]( i3 O! B
end$ U6 Q7 ]% E* i, \5 O. S  F/ T

( p8 U, e) Z% X; B' F+ \0 T1 \[temp,index_of_fronts] = sort(x(:,M + V + 1));! [; a, u+ j: E8 R
for i = 1 : length(index_of_fronts)4 n5 u2 V+ x& c# E- e
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
) `9 }  P" i5 Q9 G0 z. Lend/ K. L$ }; t9 ^/ X
current_index = 0;
2 b. \* T$ i: O6 v: {3 d! s1 k8 P& c
%% Crowding distance' R+ [) V* k# c  X. Z" I
! b( p$ o# ~. y* d
for front = 1 : (length(F) - 1)
8 V) q5 _9 m" Z; D% A5 K% b0 N: t    distance = 0;" r6 E. K+ t( j8 Y" h7 s& F
    y = [];% p% o' U! Y. r5 B  H% s% L
    previous_index = current_index + 1;
+ |, y) d) T+ e1 O7 r    for i = 1 : length(F(front).f)7 J1 c4 i8 \& H3 @# J+ I3 [# e/ y4 }
        y(i,:) = sorted_based_on_front(current_index + i,:);
0 M( ?, d4 m! `    end
8 d2 k4 N/ c/ z; ?' K, S    current_index = current_index + i;
$ M; I7 g$ Y: @; G) B) p  t- ]& O: w" i    sorted_based_on_objective = [];7 p# n% `4 v) J+ i: H) Y
    for i = 1 : M/ Y0 f$ r7 b; N& y8 u. H
        [sorted_based_on_objective, index_of_objectives] = ...' ~% z/ p: I7 i6 G3 w1 x) M- ~
            sort(y(:,V + i));
& I) A$ B; ^4 w# f        sorted_based_on_objective = [];' F; H2 [" v. @% h
        for j = 1 : length(index_of_objectives)
" P. I) Z; M1 _7 g  A2 n            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);* f% v3 ]: y( r- v# G! Q
        end- C5 d" f' l) g9 j" q- @4 h3 N
        f_max = ...# D. z+ ?& l; F3 w; M1 y2 n8 ?
            sorted_based_on_objective(length(index_of_objectives), V + i);
" I* h! p5 A5 p$ Y) V+ W2 O; B, Q        f_min = sorted_based_on_objective(1, V + i);
: E: |4 }( x# m6 q        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)..., M4 |9 C7 |) V) S5 I
            = Inf;
$ n, @- O! M& Y5 g" D3 t. n        y(index_of_objectives(1),M + V + 1 + i) = Inf;( Z4 P7 p$ t/ e! x' j6 L
         for j = 2 : length(index_of_objectives) - 1
6 ^, j3 G7 c6 k9 b* ^            next_obj  = sorted_based_on_objective(j + 1,V + i);: M# ^4 S- c. L: e+ n
            previous_obj  = sorted_based_on_objective(j - 1,V + i);
  i4 j3 f# S' u0 ]1 W4 Y7 b            if (f_max - f_min == 0)
: a; y# @% u) c  n3 k! ~/ s                y(index_of_objectives(j),M + V + 1 + i) = Inf;" C7 Z" Z8 d9 r& o0 c( J: M+ D$ \' S
            else6 ]3 v' a/ h! Y  y$ G  G3 E; U
                y(index_of_objectives(j),M + V + 1 + i) = ...1 |2 b8 X' I8 H( {  M
                     (next_obj - previous_obj)/(f_max - f_min);8 y. G8 M% p+ k) i
            end2 N- z" n, q& [( e4 J
         end
+ W& p' z) ^6 z( f    end
4 i/ ~) K+ r3 s; H* x, d: q    distance = [];
$ @7 Z9 I7 V: F    distance(:,1) = zeros(length(F(front).f),1);
. L1 f( D/ V( P& m, J3 Y0 _& b    for i = 1 : M5 a0 R) f0 t1 ]) h
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);* [3 e, I! Y0 X. _) Q+ i
    end+ B8 N4 M8 [. _: v" h
    y(:,M + V + 2) = distance;! a" B' a7 Z$ A( u' Q' v6 |
    y = y(:,1 : M + V + 2);
7 }4 p9 L* G9 Z  o    z(previous_index:current_index,:) = y;
9 U4 f0 T) [; _3 Vend+ _( G. I( u' U" }  Y6 H
f = z();! R# t5 `+ K5 H  m0 a

9 a: h6 l: L: B3 ^' c$ @" H7 y0 J; e, c6 D
④tournament_selection.m
( |* b  |: g  I* Z6 I8 l
! A9 S) R+ K. C$ bfunction f = tournament_selection(chromosome, pool_size, tour_size)/ \# G$ U+ M$ d/ h; J# ^% A
[pop, variables] = size(chromosome);
+ n! X' _) c- |/ g9 M1 yrank = variables - 1;
7 l+ ]# d# W# g: ?distance = variables;
, v6 B# {( U: B& K* {+ \$ efor i = 1 : pool_size
( W3 ]& U" j. L6 c- J' {    for j = 1 : tour_size8 u; z: x( x  _
        candidate(j) = round(pop*rand(1));
2 M# }' ]( u1 E7 r& K        if candidate(j) == 0
$ }8 Q/ u  E+ P/ q& U            candidate(j) = 1;
, F+ V8 B% O/ O( _4 S        end
% F- D: [0 {! f7 r+ e1 T' }% Q        if j > 1
+ E/ \. o1 ]. h0 n            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
0 o# T9 \6 M2 W! P9 x) ~                candidate(j) = round(pop*rand(1));! }8 @4 U; E/ _9 ~
                if candidate(j) == 0+ a7 ~' R* a$ D, o
                    candidate(j) = 1;
! E2 d- B5 J: z6 }' m& I* p3 [) G                end) M' a0 ?- Q0 T2 s3 T
            end% e! Y6 X3 H. d! F! O5 A( E
        end
( Y. {) q+ P" q% `" E    end
- N) l- r9 k5 O" C: F    for j = 1 : tour_size, Y' \$ i7 n9 ]: |1 F
        c_obj_rank(j) = chromosome(candidate(j),rank);& g8 X3 e1 ~3 e8 P
        c_obj_distance(j) = chromosome(candidate(j),distance);$ A  Q* Q  x$ B
    end+ `% f* T; J7 w, s3 [- x3 X
    min_candidate = ...5 @  F! e" T& k; Q0 r. o5 {
        find(c_obj_rank == min(c_obj_rank));
5 F& G. m5 z1 s* q  j    if length(min_candidate) ~= 1
# b# q8 e% ~% H3 K0 U- B, w        max_candidate = ...
6 v  r1 W' X7 x) w6 U" |- ^        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));5 p  }9 v) W3 e( \- q/ u7 `' Q
        if length(max_candidate) ~= 1
4 z; h+ H; j* f/ A7 M8 {, g7 c* ~            max_candidate = max_candidate(1);: [& {/ f$ a9 r# K
        end
' Q& e% c4 V( `  m) V) l4 M        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);7 {# o8 a, x4 G+ J
    else. _# t( q$ l4 {. V; O7 `
        f(i,:) = chromosome(candidate(min_candidate(1)),:);6 }! K% ]6 @, i8 f- y2 W- h
    end
0 A, ~( \1 I* l5 t# fend
4 L( z5 G: n, J- B5 b3 I) ~: g/ i2 L' M6 k8 o0 J: h

. i! [" J: b/ C/ Z  F9 X( ?⑤genetic_operator.m
, K8 J# H: x' G8 F# K, T) o: @. g8 A. c) M
function f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit); ?' A+ Y( M% p% E% y+ p! V; m
[N,m] = size(parent_chromosome);3 V2 N9 U! L" Z, s5 L
7 F0 y  c5 Q% J, K% |! v' f# v
clear m
& L* q9 b0 q& o8 j: G4 r, @p = 1;
; Q6 h* K/ h3 P8 [5 I8 a  Ywas_crossover = 0;$ P! v# }. k3 P
was_mutation = 0;, U) [3 a" o! H; I3 _9 n" L- A3 a- \! ]

1 n: P5 i4 y& s( Q! U$ s% z+ `& z* T  K9 R5 m9 ?4 e) g$ y5 Y, L7 H
for i = 1 : N
' D. `3 d7 ~1 e" u1 }    % With 90 % probability perform crossover
; n7 o# _) {, j- e8 k    if rand(1) < 0.9
& X. d$ Y% ^7 D& J7 |        % Initialize the children to be null vector.4 q# a% G" @7 [+ R6 z- R! x  R
        child_1 = [];
( E4 u5 R+ `- I! W0 y3 R' S) f- X        child_2 = [];
: r! F& S; ]( D0 [) h        % Select the first parent
0 ~& u6 i5 V( o/ {& {4 {        parent_1 = round(N*rand(1));! L5 [% }, R* e) K* [/ }
        if parent_1 < 1
8 f; n% V' b) w. ~" W0 m            parent_1 = 1;
- q" H' F- U- L" W; C" G& h        end
' S% l' o# P$ e" M        % Select the second parent
5 q: [- S: R3 X9 P0 i6 r# T        parent_2 = round(N*rand(1));
/ }. E" N" k& d% F: T# x        if parent_2 < 1
! @! u' T# c/ _* C            parent_2 = 1;
" t+ W$ P+ d4 |9 W) \0 @- Q4 Q3 K        end
1 b5 b; _. f- v# j" d( f' G2 ^8 G        % Make sure both the parents are not the same.
6 J0 x+ ^) f* O. O: \; n: B        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
# q9 `5 Z8 W0 n% ~& e, E: `            parent_2 = round(N*rand(1));
2 V" e# ^, B, x8 s, }( u. u3 n            if parent_2 < 1
0 p/ j$ _" g; k! F! n                parent_2 = 1;! o- L6 g6 p2 ~: @) F
            end( |9 f% o5 q0 ]) c8 Q* Q
        end
1 \- f8 J& H  K2 Z2 K, \: w        % Get the chromosome information for each randomnly selected/ ~$ Q" S0 w# Z# y1 m) n" K  d
        % parents7 j" o/ u5 f6 u$ k, i0 e# I$ Y
        parent_1 = parent_chromosome(parent_1,:);) F4 i8 l: I4 i2 u3 {
        parent_2 = parent_chromosome(parent_2,:);0 `  U6 O) h) v, f9 H4 }
        % Perform corssover for each decision variable in the chromosome.
! o1 M) X+ }5 X        for j = 1 : V' ~) {" m3 g2 j
            % SBX (Simulated Binary Crossover).
5 G. Q7 q/ z: O# m$ f" X            % For more information about SBX refer the enclosed pdf file.0 Q. ~& o2 J/ l
            % Generate a random number1 s7 F7 q6 y5 d3 R. v. X
            u(j) = rand(1);; }9 B: V, C9 _1 y' o
            if u(j) <= 0.5' Y; P9 G; K) F0 c0 y
                bq(j) = (2*u(j))^(1/(mu+1));' F3 `- D1 P3 {. S) m% w/ {( m
            else
5 _3 }9 I/ r8 O1 F, ?2 B                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));# P1 S( B) ?1 [, M! c# p
            end  S8 L2 `/ J8 n3 D% D
            % Generate the jth element of first child% i( ~# g, p/ A$ _( j6 o
            child_1(j) = ...1 a  n8 l: h1 @/ K  c
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));: d% j% u! t  @
            % Generate the jth element of second child
' @1 S4 N4 J5 m            child_2(j) = ...
" Q" b3 ]3 a- ]* e; i' ~; }' B$ I                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));6 }, u( F8 y/ D# i
            % Make sure that the generated element is within the specified; Q# x/ Y0 _& _4 |0 t) n7 e" Q
            % decision space else set it to the appropriate extrema.* l( a. m9 \2 v! c2 Z" g& y
            if child_1(j) > u_limit(j)3 m$ G* ^1 P9 \9 j9 m* G: Q
                child_1(j) = u_limit(j);) o; a/ I" {, N; J; o# d
            elseif child_1(j) < l_limit(j)
9 _7 _% H0 {6 f                child_1(j) = l_limit(j);- ]% o" [! y, k
            end
5 n* \4 ]$ V& D: r0 `/ M            if child_2(j) > u_limit(j)
8 X& f5 h/ L# r2 \1 A9 Z+ g                child_2(j) = u_limit(j);2 e, \1 B" L5 c( r0 Y
            elseif child_2(j) < l_limit(j)6 H$ g/ B2 \  U1 |& P- \, d
                child_2(j) = l_limit(j);
, x. ^! ~. w8 D            end% q2 Q6 j: v4 V+ X% q  W
        end
) n0 V$ Q+ i" M! D. Z# v1 o        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
# y- L9 R$ w; J# f        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
! y9 C* C% r: G  _        was_crossover = 1;
9 z: `: W/ a6 L, v$ B( G" H6 P        was_mutation = 0;) i8 O2 J8 W& W  m% w0 R
    % With 10 % probability perform mutation. Mutation is based on
/ Z1 V1 D+ W, Q& |    % polynomial mutation. ' F: d! V5 ]4 Z& I; [
    else& q) ^. l. }# Q) O7 r9 {* Q- ^- c  h
        % Select at random the parent.
7 ~# _0 r9 n1 E: X7 {2 ~        parent_3 = round(N*rand(1));9 ]& o. C1 b5 s9 `$ g
        if parent_3 < 1
+ ^$ i" j/ e( l! W4 ~  H            parent_3 = 1;
+ z& k% e# ~+ @        end# E" |3 Z+ ?; T1 x% V5 r5 @" C, j" p
        % Get the chromosome information for the randomnly selected parent.6 N  ^2 I9 a2 I. s
        child_3 = parent_chromosome(parent_3,:);  x9 S6 }+ e7 @' {+ a% ~' R
        % Perform mutation on eact element of the selected parent.
8 M( q5 ^- B4 B  l        for j = 1 : V& v; y5 e- {+ ~# B( p: E
           r(j) = rand(1);
) A# W. K: t  h1 F& N           if r(j) < 0.5
2 f7 Q/ R: a4 X               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
2 }. K# G. i0 W! s& a           else
$ b! u2 U" a/ q2 b( N  |, V! X               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
% R7 m! V. z) j           end( ~; C: a% g& ?
           % Generate the corresponding child element.
! m5 l) V: N0 i1 e3 b0 P" |           child_3(j) = child_3(j) + delta(j);2 c- J5 J1 _# v6 p. L) z: R$ o' W5 B0 C
           % Make sure that the generated element is within the decision6 g% c! a! N3 G- l0 G0 Y7 A- r
           % space.8 r& y" p( G6 p: A9 P, I% [
           if child_3(j) > u_limit(j)  C# Z5 X1 ~2 j0 {1 F3 o5 N; P& P- m
               child_3(j) = u_limit(j);1 T$ n2 D7 z, g1 A5 d
           elseif child_3(j) < l_limit(j): U0 P& W* s7 R/ ]& X; Z
               child_3(j) = l_limit(j);' b& R2 S1 o& z- S2 Z
           end9 }* t6 s# x3 g9 S3 u$ N
        end
. A3 m0 ~" W: L1 D7 V4 ?        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
9 I! f  z: O3 Q0 h2 i        % Set the mutation flag' D& ^* r  y# g: [; a
        was_mutation = 1;/ q; f2 |0 T0 t$ e
        was_crossover = 0;/ n* f0 u) \( d
    end
/ v# v+ K5 M3 V9 ~8 O/ B/ I    if was_crossover
' @1 t4 w7 `9 `1 W  y( b/ c        child(p,:) = child_1;' ]2 s' w( B$ B& N/ C
        child(p+1,:) = child_2;
0 K3 w4 X" D0 {: t- q2 l        was_cossover = 0;
9 N2 z6 z+ X! }+ q4 ]: b% y# k        p = p + 2;
4 E8 G; y$ w9 H3 p    elseif was_mutation
2 `7 z; \8 \8 X/ p        child(p,:) = child_3(1,1 : M + V);
) {, @- g0 v. b/ z        was_mutation = 0;
/ ^2 f, J8 a$ D" [        p = p + 1;
! E) H8 l* A" O% ]) M    end
! u0 s4 N0 o1 t( h' W# Hend, q0 w6 p( [, e/ n7 I- j
f = child;  E" d8 {, S$ C$ p% V
/ i; V# j" O0 ?6 L7 g9 v7 ?
# B, ?" l1 F6 c* V
⑥replace_chromosome.m' A- p0 s  U  Y6 t

( o. v* T& {: I8 E7 Y/ }6 Cfunction f  = replace_chromosome(intermediate_chromosome, M, V,pop)0 Q% _/ i% b: [  O7 P

# r0 H- ~% {  c1 r4 y- Q5 a! O" ~8 U3 }6 k2 M: k  @6 P( s' X( S
[N, m] = size(intermediate_chromosome);9 V! ^- F6 e! b$ R

: m" D- X5 N) G% v3 f' h: m( |% Get the index for the population sort based on the rank4 e5 M' ?& `7 k+ y& H
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));5 @1 f/ ^# ]) h& s4 c0 `
% y3 D; C) I) `! L6 T' k; k4 H# o
clear temp m  K6 F$ T+ F# C" ~$ {0 q# Q* I

- \7 c2 p6 d' _  c9 i% Now sort the individuals based on the index( F4 t  v# Z7 s- k7 V
for i = 1 : N
1 J. Y) H8 `" C$ t    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);! i5 K( f% b: q& r8 @. ]' D
end. i7 Z) Q# z$ ^) i

, _+ M9 L& B% n( l% Find the maximum rank in the current population
0 Q3 m6 C, I# ?# V1 mmax_rank = max(intermediate_chromosome(:,M + V + 1));) A# j+ V  h' G; s+ o

4 ?8 W( {' r, r- s$ a6 w% Start adding each front based on rank and crowing distance until the% }8 {5 e7 U0 q6 s% {" j: `. x' o
% whole population is filled.
3 V1 q% E- ]" J( K' `previous_index = 0;) b: i, c7 J; e- s3 Z- R
for i = 1 : max_rank1 N  b/ K6 F3 m9 ~3 E1 `; [. z; Q8 u
    % Get the index for current rank i.e the last the last element in the
, A& X$ T$ z; B    % sorted_chromosome with rank i. # g/ o) i8 x2 V7 {# ~$ G
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
: x) E& H6 D6 G- T    % Check to see if the population is filled if all the individuals with7 I1 s. W  E' X- r/ r) v
    % rank i is added to the population.
) a8 W8 P& \# [. e- _0 ?    if current_index > pop
+ m& i- }+ v+ a( y, F$ ~' G  ^        % If so then find the number of individuals with in with current
! a& A3 i3 o/ o        % rank i.
5 m( I5 B! E4 |4 n! {8 X% D        remaining = pop - previous_index;! H2 m4 j. w6 b6 I
        % Get information about the individuals in the current rank i.
, E/ s0 j* u7 c: b% y& w        temp_pop = ...6 z/ _0 W5 m  I/ |0 G, b! c. k& _$ ?
            sorted_chromosome(previous_index + 1 : current_index, :);
' a3 e; k; N6 K# _0 l8 l        % Sort the individuals with rank i in the descending order based on& J9 O/ j/ P9 @! q
        % the crowding distance.
- H/ O% o1 j6 q5 s        [temp_sort,temp_sort_index] = ...* ?; @; B6 _9 B4 @. }7 {5 K8 m# u
            sort(temp_pop(:, M + V + 2),'descend');
" K) T( C1 B: E. q& _        % Start filling individuals into the population in descending order, w' A+ Z! B5 Q; ~
        % until the population is filled.# Z8 t" d8 }  b9 p7 O& ]# [0 ]& _
        for j = 1 : remaining
, C7 v' Q% [; X+ Y$ {            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
0 B, M! D' J/ B- @- t* ]; l4 @        end
( D  X( ^% I1 y  f& x" q7 g        return;
, `! t9 W& m7 y8 }  U    elseif current_index < pop
, a( N# R" V- |: C( @        % Add all the individuals with rank i into the population.
: N' x% W4 R3 U' [        f(previous_index + 1 : current_index, :) = ...$ ^/ t* W0 |& U, W& i, H/ a
            sorted_chromosome(previous_index + 1 : current_index, :);
, d6 @% w. J" ~3 P0 \    else
/ M) F4 s; w0 T1 }        % Add all the individuals with rank i into the population.
9 ]0 D+ _0 E/ T3 b; e3 M        f(previous_index + 1 : current_index, :) = ...$ a/ o+ J/ C" @$ |! p
            sorted_chromosome(previous_index + 1 : current_index, :);8 ]) N1 Z. B5 Y8 {; F; ]
        return;3 T7 o! i  v/ t3 Q$ D+ U
    end
$ A# h, H# p& P. z7 R    % Get the index for the last added individual.
0 Z4 p8 [9 w- b7 V8 Z0 F    previous_index = current_index;
; |4 D2 \. Y% t, C/ ]end0 a/ w8 {/ B# t$ G3 z+ g# Z  \
$ d- h1 b3 y, b# H6 o3 m4 p
- m" q+ |" R- ?1 J
⑦自定义评价函数(我选用的ZDT1函数)
5 h2 u; f* p/ g  ]; L2 d
- K1 Q! Y( u7 i: j" z2 efunction f = evaluate_objective(x, M, V)/ D# {7 O  p8 o2 W( a% Q* T' e0 u' a
f = [];$ L1 m) c- B& I1 K/ p
f(1) = x(1);! Z7 q! G$ [' O% {; t
g = 1;) O( t& x' {0 W( |9 L. C
sum = 0;5 N; R0 I* I2 f0 q- f( Z) |
for i = 1:V
1 r. y8 }$ k9 _; l! o    sum = sum + x(i);2 Z! {: t- p2 s# P. W+ z8 {
end
, K6 y: [0 g* j( usum = sum + 9*(sum / (V-1));, g! d5 I4 s* [6 |0 [6 h. M
g = g + sum;. B, m: v* m& o: o; P; Y9 ~% k
f(2) = g * (1 - sqrt(x(1) / g));
1 |7 n: Y# r' n' U0 M6 s0 t: Qend
- [' K- N; r, h! h! M
% t& R( U7 U; i1 n( f; M" F5 P) m. j% D2 g* P* B
500个种群运行500代的结果:
; @& J  P: m8 Q! M. A3 Y  C3 m   e% A; C3 y; o$ G
  l! N$ Z& [+ e* p5 o8 s) E/ A9 }/ P' F
5 K: g6 P) n3 E0 b9 T
" v6 l1 k8 _; L* ]4 m6 E
: M" S$ O2 N2 O/ w' C4 }! L- }) M
6 I2 j0 L. T# Z3 X  X6 L$ ?

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-23 02:39 , Processed in 0.140625 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表