| 
 | 
	
    
 
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册  
 
x
 
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。  
5 F( T1 J6 V8 A( |. N" j6 B$ j 
 
 
* J, a( O# `7 |! R8 j" [) V. S0 H# W5 N. f 
NSGA2的过程为: 
$ |9 ?# k5 k! \ 
8 f1 F* ^; v$ G* k9 i1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N& s( m0 D: u: y% V& ] 
5 D$ |, I* ^3 W8 H) c( z- C 
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..* ^0 W' ~; S: Q) n3 P8 F* l 
/ J. Q; A$ _0 L: E 
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3 
* y" \! a- A) D0 F" U; u! b+ M, j. i$ L8 H1 J 
下面是完整版的代码:' \4 |. K- i, W8 e 
% z* D! J  q/ j( u! ^ 
①nsga2-optimization.m 
- {; f' ^5 L1 w9 W3 b" ?$ R( D# B! H5 P) o1 q" S; D 
function nsga_2_optimization 
. O, P1 n# z! P- |$ L: B' P6 }%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
. m7 M+ f$ f0 B, h4 e%此处可以更改7 C! h! z; ~- G  i9 ?& W 
%更多机器学习内容请访问omegaxyz.com 
5 C3 z  F2 O0 A# y; O. X  wpop = 500; %种群数量 
- O8 d; K/ G1 {( wgen = 500; %迭代次数9 j# Q$ c7 L" N$ ?0 X! Q 
M = 2; %目标数量) u  m9 q* j) x- y# v! X. `# T 
V = 30; %维度7 e% B* D$ t% @6 p0 r8 D 
min_range = zeros(1, V); %下界; C6 Y! d1 Y4 G 
max_range = ones(1,V); %上界 
3 i7 ?# B! m0 W3 J+ R%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 s; r! o# [5 ^( M& q* m 
chromosome = initialize_variables(pop, M, V, min_range, max_range);8 d9 ]  t% O. a* N 
chromosome = non_domination_sort_mod(chromosome, M, V); 
8 e) o* O# U  e  y1 C 
) H, _; M/ n5 t) J* Q5 ]for i = 1 : gen 
7 [$ p: @/ N  t" o# B9 v    pool = round(pop/2); 
( g6 y% k, s/ z    tour = 2;6 C7 b6 t& t3 \* T) ]# w) ^9 W8 F 
    parent_chromosome = tournament_selection(chromosome, pool, tour); 
% _! R: L3 W* Y3 b8 h* s    mu = 20;0 O3 P# f2 }" ]5 B& a 
    mum = 20;1 C' E7 H. K$ f  s" M 
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);& i# e- B6 f. Q7 W% J2 U/ C 
    [main_pop,~] = size(chromosome);  R; e8 N! p& w9 q/ |# W 
    [offspring_pop,~] = size(offspring_chromosome); 
, x, `2 t1 O1 h, E8 \2 k" t" {, l    clear temp 
/ e3 d* _$ q: k    intermediate_chromosome(1:main_pop,:) = chromosome;! [( D. v0 f) a3 H/ R5 O2 J 
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome; 
7 d" H0 i1 C; [9 Q& X    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V); 
& [. h$ J1 d( Q' V# T6 U) g' [, P    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop); 
' ^! Z; j0 @3 o+ G# y+ r% w) j- Y    if ~mod(i,100) 
2 F+ B; d' f  ^* [, v6 E$ O2 N        clc; 
+ F' t% b' }( E3 |        fprintf('%d generations completed\n',i); 
, m1 w8 N) a+ U7 I$ c4 J8 |' j' ~$ ^0 R    end 
' y# D. I3 V  N; q6 G+ W& Qend 
6 w$ [9 q1 [' F. q" C/ s4 b, S; Y, G. V& p( x5 E; W7 x, I8 j: |# ?1 ^& B3 h 
if M == 2 
1 F) f4 \* K- A, `    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');- }5 \; f3 y2 V7 O: D# S 
    xlabel('f_1'); ylabel('f_2');4 F* V- J. Y/ A* Y% {' I7 w- J7 e 
    title('Pareto Optimal Front');! B: T# c6 |. `1 j: x 
elseif M == 3 
! b, @" }8 j% \1 _4 }& C7 M% s/ d    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');% \: ~/ e4 `; s  m; {2 P! }& ] 
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3'); 
% G+ A: O) k& E; `, g* d    title('Pareto Optimal SuRFace'); 
" r& L- x/ k- X: pend! I$ ]3 x$ L1 A6 K9 w( v 
 
! d* J9 w$ G' s3 q9 B; V( i4 t/ s0 H# r7 t& u0 r2 \& ]; @2 b" l* @ 
②initialize_variables.m 
/ v) }' ]  e. i' ^+ ]5 x$ {( a# d2 X; U% |5 }2 k 
function f = initialize_variables(N, M, V, min_range, max_range) 
7 z* ~! K$ X8 R( B0 p; Y7 f8 zmin = min_range;3 Q: N- O0 N5 h+ _% N) r 
max = max_range; 
- p9 k! A2 h" ]% V4 L0 E$ |9 f0 OK = M + V; 
" _) W6 s( b, U* m- `- @for i = 1 : N 
5 C* i$ O, @( Q7 l. B% E* U' {    for j = 1 : V1 E5 T: B! p0 ?9 x3 B+ K 
        f(i,j) = min(j) + (max(j) - min(j))*rand(1);$ Z$ n8 ?  Z2 [1 S  ] 
    end 
9 b# G7 x5 P4 t* L) `    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V); 
, b0 b1 V8 ?& }8 K5 j) Jend1 L2 ^9 i6 n" g$ o1 \* {4 `0 D% J 
 
$ M. o0 K. `7 A2 F* X  e! Y! F2 x6 O, D. f1 h# U# q) u 
③non_domination_sort_mod.m 
: V6 @' J; V0 b" i  p! ]1 B5 m2 X- u6 f# U: b& f8 v: H 
function f = non_domination_sort_mod(x, M, V)( _8 p0 h( ^6 E, \0 T7 s 
[N, ~] = size(x);6 m' h* u4 r& l9 o4 V 
clear m. |4 F) w3 V8 m5 Y  |+ ] 
front = 1;8 ~1 v$ w; |6 b, ~1 r3 T: A 
F(front).f = []; 
7 z3 _/ ]( }  v% s% v4 G: pindividual = [];$ F5 G8 y9 u2 u- D# C, { 
7 B( z; L  v) I" t% D! s 
for i = 1 : N8 C$ _" X  D" [' t" ?( {' E( R+ ] 
    individual(i).n = 0; 
& ]  N0 t4 S( z8 e    individual(i).p = []; 
* b7 e: z6 b1 g5 `( ~5 s    for j = 1 : N0 O. {/ ?) @: {- z' D 
        dom_less = 0; 
9 d4 }8 q4 `4 l& C% o. G5 j        dom_equal = 0; 
% ~. H& X1 L2 ^1 m        dom_more = 0;+ O/ p! o4 i* o( a2 ? 
        for k = 1 : M 
8 i  _# N% G* `4 N* j, p" I            if (x(i,V + k) < x(j,V + k)) 
: K7 ^! G# h: Q                dom_less = dom_less + 1; 
! ]& r2 r1 Y) R$ [: v; g            elseif (x(i,V + k) == x(j,V + k)) 
% W1 r' A  x  p; N) o' c* s3 M                dom_equal = dom_equal + 1;. }) k4 b. O9 A3 [2 j  z 
            else7 j1 I- I' A+ v+ X* v 
                dom_more = dom_more + 1;, s" ~) k$ `. f5 V" \7 j8 c 
            end! b) n; `5 a' v7 M1 h) v* G9 {5 k3 w 
        end 
$ F' Q+ R8 y# D- e$ R2 P- h/ {        if dom_less == 0 && dom_equal ~= M 
5 V5 C- |& I7 w: ]/ _            individual(i).n = individual(i).n + 1;% f5 T' h) H6 n+ ]2 D" p: A 
        elseif dom_more == 0 && dom_equal ~= M 
& _- I) E6 i5 g( Q& n" q            individual(i).p = [individual(i).p j]; 
8 F- g5 G+ c* k        end 
  E% f. L, O+ `6 j) }6 j/ q) B3 i    end    
5 u" {, }0 |! |+ m    if individual(i).n == 07 d- P9 D, h# }: n' X5 M5 E. y  Z 
        x(i,M + V + 1) = 1; 
7 s- x" E+ |' Z( z4 L6 f2 C        F(front).f = [F(front).f i]; 
$ H& V. E- j- t  Y# n    end; Y4 m1 o# b2 N: t0 ?2 e7 ` 
end 
3 \$ E/ p8 k3 p5 {- W* d4 l3 k' ~* o* i; `  e8 A& J 
while ~isempty(F(front).f) 
7 v$ F8 G/ l6 C) v  |7 i   Q = [];+ X' {& C% n. ~* B; {  V0 x$ ] 
   for i = 1 : length(F(front).f) 
! N3 W! O, N8 v, L% i       if ~isempty(individual(F(front).f(i)).p)' J3 O: @$ q4 O: T/ _) ]6 r4 h) E 
            for j = 1 : length(individual(F(front).f(i)).p): G6 z5 R" R/ ] 
                individual(individual(F(front).f(i)).p(j)).n = ... 
$ e" t6 u/ c: V                    individual(individual(F(front).f(i)).p(j)).n - 1;3 V, N3 G0 s; F! ?  e2 i- A 
                if individual(individual(F(front).f(i)).p(j)).n == 0 
! J/ @" j/ N. Y& Z! M                    x(individual(F(front).f(i)).p(j),M + V + 1) = ... 
( [, o7 D- I5 @8 B8 F2 F' y3 R                        front + 1; 
5 `# R% f8 U7 w1 k                    Q = [Q individual(F(front).f(i)).p(j)];* w# i5 `3 i" i 
                end: ]8 J8 F7 m2 t* I( _: x# O; N4 Q9 S 
            end- G. G/ l5 H5 |4 ~  D6 V! H 
       end# A' x% \2 |9 z8 p 
   end4 u3 O# D- V& {4 d5 A 
   front =  front + 1; 
8 F1 q/ o$ R! [( n/ O   F(front).f = Q; 
; [# f4 r& j3 M1 s+ `end1 M: A6 m/ [  i/ }5 G 
 
" T% U) Y( ?8 J" E" b[temp,index_of_fronts] = sort(x(:,M + V + 1)); 
3 u: R% I+ o& F- @& G) N- Gfor i = 1 : length(index_of_fronts)% z9 i8 y- K( H: p 
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:); 
7 m4 H7 P# z( P% uend) x, u9 x0 s0 b. T8 t3 g7 ] 
current_index = 0;" r3 J1 t9 z8 \, r- I4 s- H 
- V+ {9 e6 G8 @. P' I$ |  @1 v 
%% Crowding distance 
( i' L4 A! D5 M5 F" c! r1 p$ U1 k% H* } 
for front = 1 : (length(F) - 1) 
0 |9 s3 f! ]$ P: M! A. X    distance = 0;! W9 g1 V8 z" B! e( h) m 
    y = []; 
0 ?  W1 m9 N7 V8 p4 S    previous_index = current_index + 1;% b9 G. ?1 W; [% i9 x 
    for i = 1 : length(F(front).f)0 h8 W/ M8 V. Y8 i+ Y+ U& H 
        y(i,:) = sorted_based_on_front(current_index + i,:);: E2 ^: b9 {+ t! Z0 k 
    end 
: y) k! X/ m* V    current_index = current_index + i; 
6 V% v! x" f2 }( U) c    sorted_based_on_objective = []; 
& M3 D. v  {7 Y; |3 W- Z    for i = 1 : M 
/ a+ U* F  P, t" a4 m. w        [sorted_based_on_objective, index_of_objectives] = ... 
9 C' k0 w3 T4 Q" K. `1 [" P9 g8 @5 F            sort(y(:,V + i)); 
1 k( D4 i% _. s2 l" r        sorted_based_on_objective = [];5 C% Q: n" ]' X' U* { 
        for j = 1 : length(index_of_objectives)* u% ]  O/ @6 v: d 
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);9 g" A; J" L' `0 T% v) w( h 
        end 
3 P7 Y: Q* U: O$ z6 C; ?        f_max = ... 
$ h0 ]; Q% d3 c            sorted_based_on_objective(length(index_of_objectives), V + i); 
' t9 h4 w6 f8 W1 v. q5 M        f_min = sorted_based_on_objective(1, V + i); 
+ a4 A5 t* W/ n1 Y* c        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...% ?1 [; ]! n' [3 v 
            = Inf;  e2 H% {8 s6 C! |6 ~1 ? 
        y(index_of_objectives(1),M + V + 1 + i) = Inf; 
$ g1 y: g: h# D9 d6 E         for j = 2 : length(index_of_objectives) - 1# S" o$ y* u2 S, C 
            next_obj  = sorted_based_on_objective(j + 1,V + i);! e( q  d  i" E3 G  C; R1 O 
            previous_obj  = sorted_based_on_objective(j - 1,V + i); 
, J' i; l5 N5 U. p8 s            if (f_max - f_min == 0)9 ?) C' H. ^* X$ p' E: \ 
                y(index_of_objectives(j),M + V + 1 + i) = Inf;8 H& t: z, U8 V* X% Y" F6 v* n! v 
            else 
4 D$ I2 p. n7 S6 R                y(index_of_objectives(j),M + V + 1 + i) = ... 
' d% f1 I7 y! q" i& q                     (next_obj - previous_obj)/(f_max - f_min);4 }; U5 U$ ~: v: ? 
            end9 b4 k( o' k4 b; l9 i4 }8 b1 Y/ e9 w 
         end( e3 {6 t+ _! l" I$ T( r' h5 B 
    end 
: O2 [- m" b# v2 H    distance = []; 
* ^  V5 j! W4 m2 `1 c* B6 ?    distance(:,1) = zeros(length(F(front).f),1);& b  _8 r1 d( x/ }. {; t9 E 
    for i = 1 : M 
* b# Y# a% U4 G9 P$ X- l        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);& i3 y* R2 r$ [9 X 
    end 
( K7 _- v. e* O% u    y(:,M + V + 2) = distance;$ y0 O+ `5 k5 j+ W- c# R 
    y = y(:,1 : M + V + 2);' v  U8 E4 r( X 
    z(previous_index:current_index,:) = y; 
! X5 V% L5 O1 V' u5 qend- S! e  @- p! }7 |$ \5 E/ H 
f = z();5 |, ~+ L) R' L) h 
 
( }. r/ \; H  c# M# d3 q0 D( j& P) f* c3 T 
④tournament_selection.m& R* |4 a! B' v$ U& h, [0 W3 |) ` 
 
( ?9 W. E. y1 F5 ^$ u7 Yfunction f = tournament_selection(chromosome, pool_size, tour_size) 
# x" K' c' Z, O+ [# Y* E5 _7 O" ?[pop, variables] = size(chromosome); 
6 K; W! n" S& z+ arank = variables - 1;& M7 S) i( t: [  _, ~4 \; i 
distance = variables; 
" H  J1 v2 r' \, Q8 @for i = 1 : pool_size 
' V; w# d0 r& e2 s  F9 ^5 d* k    for j = 1 : tour_size 
  l3 R+ M. \- V        candidate(j) = round(pop*rand(1)); 
- }& D* H- t! I1 P" _        if candidate(j) == 0 
. y" o8 t$ p( F3 P# }9 L            candidate(j) = 1; 
- K' e2 f- e7 m  N2 b        end; N5 x7 J3 m- v1 S; q- D9 C+ E) k 
        if j > 1 
* @8 ~. s( g9 i8 R! k; n            while ~isempty(find(candidate(1 : j - 1) == candidate(j))) 
% Y! f& A+ m9 }, ~% U                candidate(j) = round(pop*rand(1)); 
" z; M# }  M# K) V0 `, ^* a2 d: E                if candidate(j) == 0* o. K! M6 U* @) m4 Z 
                    candidate(j) = 1;/ V* u6 P# F6 h, V4 Q* T! i2 |5 Z 
                end 
: M+ }  ^6 U& ]0 V9 i6 O5 y! S  f# v            end 
2 Q5 Y/ E6 ?. ?3 R0 J- Z7 {) R        end& X8 I- j  V' D  ?, Z 
    end# ^. m$ r' p2 q2 Z0 @ 
    for j = 1 : tour_size 
7 y+ g, m: I$ b7 p- [* C        c_obj_rank(j) = chromosome(candidate(j),rank); 
# K7 a  O. z1 M& c        c_obj_distance(j) = chromosome(candidate(j),distance); 
  }& [; U- j1 j2 q. T6 J3 V& d4 M, Y    end, E$ M0 S  c( x1 i7 {; y$ M4 z; _ 
    min_candidate = ...! ]9 U" o* Y6 {- |/ r9 y# c 
        find(c_obj_rank == min(c_obj_rank));! T7 F- l+ ^4 E9 ?- y5 H$ [+ R 
    if length(min_candidate) ~= 1$ E  G7 S; Z* m; ]- {8 w: a  D# g! } 
        max_candidate = ..., l5 B" w" L& u 
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));* Z0 }% `" F1 K: }# s1 E5 {' c 
        if length(max_candidate) ~= 1  |  k" ]5 u# H3 l6 E! f 
            max_candidate = max_candidate(1); 
8 l* G4 b, ^, d* w9 J8 ~        end 
  |6 n/ Y9 }# M& N+ F. [% s        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:); 
& A/ d5 k7 y7 A    else 
" t9 B! w1 `( A2 x8 [% ^9 i        f(i,:) = chromosome(candidate(min_candidate(1)),:);4 ?( f: k+ c. t$ P9 H. G/ C 
    end 
$ Z2 ^9 L4 V: u" x+ }end# K3 F9 _" ]0 S6 q$ t 
 
6 h1 A' I' n& w" e 
0 d* y. [6 u2 i5 i8 p⑤genetic_operator.m: M, ]% p/ I- W% d6 ?4 m 
 
- k; t: a# t! \. T, P2 lfunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit). p* f/ D' y5 i7 | 
[N,m] = size(parent_chromosome); 
$ h) X% `4 b% f5 N' { 
+ Q, N: H0 L' |) P+ u6 u; Z; G2 Nclear m. Z2 R0 [6 N4 |! b- x6 d 
p = 1;5 [  w4 P3 f' n9 m 
was_crossover = 0;) v3 h, v" `7 r2 R0 c; r4 V+ S 
was_mutation = 0;/ K3 @* ~2 I: A$ R. E 
 
$ c( U6 o9 J* o+ X( r) s# ]# C1 x 
$ `& A7 N  `1 j# w2 B: tfor i = 1 : N* f. R+ e% E6 Y/ _ 
    % With 90 % probability perform crossover 
' T! u* i5 e/ m4 q6 j% ?" d1 P    if rand(1) < 0.9 
0 t1 T( r$ _: R1 n* N+ c' j        % Initialize the children to be null vector. 
6 E* _" n* p$ w8 s) \6 B; [        child_1 = []; 
8 {3 K3 n; S5 C) F        child_2 = [];0 u) s2 F/ t+ J 
        % Select the first parent6 P5 t3 x+ v* m6 r. D* D, p6 W 
        parent_1 = round(N*rand(1));. Y. y% Y1 w6 K# h( ^, l  G 
        if parent_1 < 18 F0 f5 p; p' [# |6 P/ L 
            parent_1 = 1; 
1 Z4 e, F0 T0 J. F  c& S, A1 Y% c        end 
" c) q4 N5 ^4 y1 {) R* Q# Y" K5 O        % Select the second parent! [2 ~5 N* p% l5 ` 
        parent_2 = round(N*rand(1));% K: ]4 ?" T" E, |) \ 
        if parent_2 < 1: k- T# W* D9 l8 L3 e3 l 
            parent_2 = 1;9 Q7 M0 K) ~' e4 h# ~ 
        end 
/ K: w7 N- ], b( l: s& l! N        % Make sure both the parents are not the same.  
2 W0 X0 u0 H  P2 f" c8 _) p        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))+ q8 t$ X0 J6 T5 D, r2 _9 z 
            parent_2 = round(N*rand(1)); 
! T" P% K0 n) X            if parent_2 < 1 
& |1 B  K: ?+ c) X. U& `                parent_2 = 1;4 E: P4 i4 v( j$ v1 f: c 
            end 
" i$ r# [7 a7 H3 U: M. v4 b4 t        end; e4 S+ L/ B- ` 
        % Get the chromosome information for each randomnly selected$ i6 U2 O; T6 n& u1 W0 r, p3 ` 
        % parents 
% t( v" U7 ^& v% l6 f        parent_1 = parent_chromosome(parent_1,:); 
& C9 Y* v' w5 E0 b) U, h% @        parent_2 = parent_chromosome(parent_2,:);4 h( G6 h) z) I! N) a$ k* }& w 
        % Perform corssover for each decision variable in the chromosome. 
. @% [7 E7 s% i! u$ |        for j = 1 : V, }3 m; r9 C3 h2 O 
            % SBX (Simulated Binary Crossover). 
* b' M8 v5 J, d/ f, G8 N            % For more information about SBX refer the enclosed pdf file.+ C9 m% R6 g5 r; J/ I, Y 
            % Generate a random number 
; h  J/ d$ x  U& V' j            u(j) = rand(1);  K' i4 B( R9 C1 [ 
            if u(j) <= 0.5: J$ Z. p& f3 @/ n 
                bq(j) = (2*u(j))^(1/(mu+1));1 ~* n7 n' X1 L* a 
            else 
1 z  i/ a3 B$ Q; W                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1)); 
" P1 L! ]& H- I; a" n; ^            end% C9 U# F- c  {/ u8 l3 ] 
            % Generate the jth element of first child 
6 |+ o  N2 h' f# J, X            child_1(j) = ...7 {! M0 s# s5 V* w" Y1 J 
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));3 s9 f  I( E# f; i7 ^ 
            % Generate the jth element of second child 
( B( I" L+ Z, k  X            child_2(j) = ...) A( S. W9 U& U: K0 B* O 
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j)); 
2 Z8 _- [! a0 ^9 N+ _& y4 `            % Make sure that the generated element is within the specified 
  [' ~* I( d  G+ E! h6 i            % decision space else set it to the appropriate extrema.2 ^* E) w* V1 C/ u 
            if child_1(j) > u_limit(j)# K2 A) z6 b4 `+ V( z0 n1 t8 H( J 
                child_1(j) = u_limit(j);2 {: t4 O# i4 N( v6 u& O 
            elseif child_1(j) < l_limit(j)$ A# I9 ^4 q9 U, `( m1 B 
                child_1(j) = l_limit(j);- e- m; @! d+ ^. G% Q) ?7 P 
            end 
( e, s1 h  [1 r1 X3 A            if child_2(j) > u_limit(j) 
# y, y. t; [8 |. u5 h9 J                child_2(j) = u_limit(j); 
5 e! ~5 p$ x+ ~            elseif child_2(j) < l_limit(j) 
% |) m. _! b! j; \                child_2(j) = l_limit(j); 
$ ~/ m8 F  s' R! G            end 
5 {4 V* X& k' S% {+ {% Z( c        end 
, H+ u2 U  z1 b/ X) U        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);/ `" e& ~9 J0 q3 r# R 
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);8 n& q; O. N) `( H' O 
        was_crossover = 1; 
' Z2 R+ s5 d' v) w        was_mutation = 0; 
' ^5 R4 b: C% I/ c    % With 10 % probability perform mutation. Mutation is based on' [5 x6 n4 A: d+ W$ D" n* V 
    % polynomial mutation.  
7 \9 L/ P5 t6 `0 X$ L    else: ?/ m# ]. L! B 
        % Select at random the parent. 
; p: @) e' O2 R& S* J+ n% k        parent_3 = round(N*rand(1));2 _7 F" \+ n' s* p 
        if parent_3 < 1 
7 l" i& t) F* w" P& o6 p            parent_3 = 1;: D, a  c6 g$ H' w3 s! t# P 
        end 
/ g' e% f  J4 f# ?5 E- x1 `        % Get the chromosome information for the randomnly selected parent. 
( v1 q' W5 e. C        child_3 = parent_chromosome(parent_3,:);, N( B+ j' Y/ W( G 
        % Perform mutation on eact element of the selected parent." H7 {: I/ t; B1 T7 e 
        for j = 1 : V+ Z. {( _& _+ e. N0 Z 
           r(j) = rand(1); 
8 P) u& w( V: e" O. `9 d: ^' W. R' L- t           if r(j) < 0.59 A" O; @) L  Z- p) H% r8 Z  ? 
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;) P8 n' j2 |1 N0 s) Q 
           else 
# T, m" v2 t4 L1 O& L2 c  p               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1)); 
  t* P5 w# q) Q5 L* o           end0 G. V8 m1 B. V4 Q/ t! ? 
           % Generate the corresponding child element. 
0 [) r0 K# C& j2 K/ _8 l( N6 g           child_3(j) = child_3(j) + delta(j);! V: W5 s% ]) d  t 
           % Make sure that the generated element is within the decision0 W% K2 N$ n) L& [: o' F, z6 ?  { 
           % space.3 F6 n$ O2 V6 O8 h+ k 
           if child_3(j) > u_limit(j) 
9 `7 D) u5 J7 o; F' w/ H. D4 L; G               child_3(j) = u_limit(j);/ a+ H) i4 d( ], Q 
           elseif child_3(j) < l_limit(j)2 F1 v" T' D+ O 
               child_3(j) = l_limit(j); 
& M5 [, y5 Q# g' H0 d: m& D           end5 u: b, j2 w0 M8 C 
        end1 L& L( j5 Q' ~2 F2 i 
        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);" W- g& t# ?* Z% Z/ d 
        % Set the mutation flag' o6 T& H: |! V& W 
        was_mutation = 1;* i6 G, e' D/ n* t1 B/ H& d 
        was_crossover = 0; 
$ r( \: ]: @* f+ ~    end% p5 K3 _" Y5 e! j 
    if was_crossover# Z% L# o4 B- B" U$ s 
        child(p,:) = child_1; 
! F6 o' Z1 R/ k1 g        child(p+1,:) = child_2; 
4 q: ]) p& c1 l" Y  U) B. l        was_cossover = 0;. v0 p. y% ^4 V3 k" c 
        p = p + 2; 
  o2 g& ?: z. [# u    elseif was_mutation! ]/ W8 A% \+ V: a" m 
        child(p,:) = child_3(1,1 : M + V); 
" B3 K0 \7 P" r        was_mutation = 0;- x1 M- i3 I4 ^0 Q1 z: { 
        p = p + 1; 
3 w1 _! l* r+ Z8 H# S# \    end, e0 Z: b8 I8 r' T 
end 
5 {. A) r, b9 D" u9 l5 ff = child;  w4 J+ q2 [4 U. v/ B& t 
 
6 n% h! n+ h3 q9 v5 N 
4 C: X5 T# D9 O' n5 ~⑥replace_chromosome.m 
  l8 x4 ]4 Z( V7 q; t9 v# F7 E, b  V+ p7 N  a 
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)! O" C- m$ ~9 u 
 
6 B$ G$ y  B/ v 
% B6 D3 a6 o- \' S/ k[N, m] = size(intermediate_chromosome);/ x  O/ t9 P) [5 E# R 
 
3 a2 B# n7 M# n% Get the index for the population sort based on the rank3 K# y9 B- |, B 
[temp,index] = sort(intermediate_chromosome(:,M + V + 1)); 
8 U' A: m0 ?  B7 m) ?( I; W) Y; ~+ c 
clear temp m 
' B" S9 ~8 s$ R2 N2 e5 f) r* e: z6 [- d/ _3 E7 b 
% Now sort the individuals based on the index6 P9 X, a* _/ f' ~. v# B3 L 
for i = 1 : N0 W# _- G0 g5 a1 @+ G 
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);, }% u. m! f# ^* @; A 
end 
* w1 L. O; P0 B8 R3 o4 o5 E 
* f8 k% L2 C+ T6 ?4 h% Find the maximum rank in the current population 
& `: V- r$ d7 c, Q% U& m4 X7 [" W' {max_rank = max(intermediate_chromosome(:,M + V + 1)); 
0 i( a6 H8 v! C8 U/ n 
& q5 z; ]" V# M: P; g% Start adding each front based on rank and crowing distance until the 
3 R3 b: f# n; M: W2 p8 w' K+ _& i% l7 l% whole population is filled. 
# M. O" ?( z2 g: B0 n/ n# L, b+ iprevious_index = 0; 
: ~; Z+ }! i$ h5 \for i = 1 : max_rank7 ~0 d8 s4 E$ `4 r5 t0 K 
    % Get the index for current rank i.e the last the last element in the# j9 l+ p9 u8 F! K 
    % sorted_chromosome with rank i.  
6 O+ r% `! W- S1 l+ N+ P5 w9 Z; w    current_index = max(find(sorted_chromosome(:,M + V + 1) == i)); 
  n1 c9 U1 y$ B$ y9 H5 `    % Check to see if the population is filled if all the individuals with 
( Q! Y0 p" ]1 @  `( Q# k" V: k4 l    % rank i is added to the population.  
* p# H3 w$ z( q' Z    if current_index > pop8 W) U8 G% W; Z* S 
        % If so then find the number of individuals with in with current 
3 S6 @0 X6 P# D        % rank i. 
( F6 k6 c1 q8 F! {        remaining = pop - previous_index; 
: \8 Q9 Z. X8 l6 c- w  a9 ]        % Get information about the individuals in the current rank i. 
5 E! ^% H! i* c# `1 \# u; m        temp_pop = ... 
/ e& T( A5 x' j! @  P$ L            sorted_chromosome(previous_index + 1 : current_index, :); 
* U/ d/ G/ }2 L! x) z        % Sort the individuals with rank i in the descending order based on$ \  J% P* R" q$ f% M7 s% m" T; O 
        % the crowding distance. 
  x' `0 J6 m5 Q' ^5 d        [temp_sort,temp_sort_index] = ... 
* |# Q. x5 s9 \' I+ x- s& O' U* v" u            sort(temp_pop(:, M + V + 2),'descend');- b* \6 L# l6 r 
        % Start filling individuals into the population in descending order2 r5 |$ {! \0 Z( s6 L2 L5 ? 
        % until the population is filled. 
7 m5 P1 Z, e% _) E9 m. [/ Q( z        for j = 1 : remaining; z7 j& o" O) D" ~5 Q 
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:); 
" _0 F; E. {! g2 B2 v        end- c& X0 i/ n2 M0 ? 
        return;' @, X- _/ V* e7 V) A: ^; w' @ 
    elseif current_index < pop. i- x) h* P5 B* j3 B. q! X 
        % Add all the individuals with rank i into the population.& t2 ~8 L5 P# @9 S: _# b$ X1 Y 
        f(previous_index + 1 : current_index, :) = .... i1 f! E3 A/ U- x 
            sorted_chromosome(previous_index + 1 : current_index, :); 
! ?8 @# I  h; T; R* R5 l% ~    else; P0 V2 }( K, b 
        % Add all the individuals with rank i into the population.6 X. y" ~3 @2 K6 K( u7 B3 k$ I 
        f(previous_index + 1 : current_index, :) = ... 
) `* `- g0 V; O( s            sorted_chromosome(previous_index + 1 : current_index, :); 
! m% m+ _. l, F, S" w6 Z: Q% D/ P8 m( }. z        return; 
* m) t4 J& t  C; s! j    end 
) W# V1 F7 ^4 h: A  l3 m# S    % Get the index for the last added individual./ a1 h$ q4 b( V4 R  J* | 
    previous_index = current_index;. \0 @* [/ a  w 
end 
$ C2 E6 Y) C& a7 v! o  t' \; \% O& p: V/ L9 D$ j) U" I8 S 
 
6 M, U5 k' |4 M  R9 M⑦自定义评价函数(我选用的ZDT1函数) 
1 N" ?- q' H# l- A3 P2 V 
! e# A' b; S6 h0 Y. p! Pfunction f = evaluate_objective(x, M, V), P+ @( F1 l  k 
f = [];/ e1 Q; _5 _4 ~  N, N% m0 u 
f(1) = x(1); 
) {1 N% @  q6 T1 a6 gg = 1;+ c" s( S! M, d& W- p6 X7 d 
sum = 0; 
# I9 I# N0 U* ?5 pfor i = 1:V7 T  x$ Q& Q* l- m$ c) s( l 
    sum = sum + x(i); 
! N; d) o( h& C0 \4 j. tend 
$ x% _% e0 j; \1 Z- |7 ^sum = sum + 9*(sum / (V-1)); 
' @: R& n# D) w! J( p3 Kg = g + sum;! G$ J# D! f3 G" n$ ` 
f(2) = g * (1 - sqrt(x(1) / g));, _8 y- m6 y6 P" P3 G 
end- C+ @" p; ?1 Y6 I0 i4 B 
 
9 d* I! T# c8 m4 D& T' m1 |3 d# o 
* f9 K$ D; {! q500个种群运行500代的结果:  
6 w8 Y) q+ [  R  j) X9 f
 
 
, e3 W2 u0 F; \. P; k  o2 b/ g 
$ Y9 A* L& l6 T 
' Y( Z2 V& h6 k5 w0 @* M 
  f& d7 e6 `& S6 m, P) X/ s 
* E/ s" a) [* ~: j! R) k, { 
+ [  w, E8 x; _' p! _% U 
 |   
 
 
 
 |