|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
关于floor函数的作用:1 ]) z+ _: H2 m4 Y; P
1 B5 y2 K1 ?4 z C6 M5 O& Tfloor:朝负无穷方向舍入
O2 Y. S5 }' h
* N0 M7 j9 V" V, n7 NB = floor(A) rounds the elements of A to the nearest integers less than or equal to A.
. V4 x) x: e% C5 _4 a* I) C6 v& y- n0 K$ U" I2 Y
ceil:朝正无穷方向舍入4 J- A5 r% Y( \* b* ~! I
7 M% Z- x" J5 d: C9 J. l
B = ceil(A) rounds the elements of A to the nearest integers greater than or equal to A.* j5 r4 \0 D7 f6 Z5 N+ I
; F9 C" H8 z$ e, A# x" ]) }* Cfix:朝零方向舍入
, m. s8 I' f( V- o& `7 P/ K
& ^/ P# D! Y; M8 PB = fix(A) rounds the elements of A toward zero, resulting in an array of integers.
# J d. B* |4 C' O7 ^- @# I% R* n8 x; j8 u) m- U) u( p
round:四舍五入
5 e9 ]! F4 `# l' U+ L3 s# J( Q. S" S5 t1 I
B = round(A) rounds the elements of X to the nearest integers.
9 Q. A* A3 o* q+ H2 a) A( T# F5 F2 _/ M; k1 w C J
norm:求矩阵或向量的泛数
. h) T0 S3 d, s- n. P* j( J, ~4 d' t1 O! r9 Y
x = [1 2 3 4 5 6];
/ B" s# s% g9 Q- D9 J4 k8 O) N+ D! i* B* R! i
norm(x) = 9.5394& f4 G$ c% x% Q' K0 \6 X6 ]
6 h& _3 x [5 n( a% ^
Example:
$ r: U* [; J2 Q' Z; t: N
, {& g; W1 C: G e4 |* ^a= [-0.9, -2.1, -0.4, 0.3, 0.8, 1.1, 2.7, -1.2+2.9i];
2 I9 C) t. w9 N9 P t
8 d+ l) |4 R) l6 v B! Z6 zfloor(a)=[ -1, -3, -1, 0, 0, 1, 2, -2+2i]
5 V6 l' L _7 ~( g8 O
/ r: h( R6 A; C4 c' X8 C' |; Lceil(a)= [ 0, -2, 0, 1, 1, 2, 3, -1+3i]; ?# a! ?8 E$ U7 i2 d# K' w
( v5 S" ^) d+ b4 [
fix(a)= [ 0, -2, 0, 0, 0, 1, 2, -1+2i]1 }1 R8 \6 F7 M0 k4 s
8 A2 d9 ?, i d3 U. y& T) pround(a)=[-1, -2, 0, 0, 1, 1, 3, -1+3i]
" K! ^: V( D/ R% [4 F
/ Q; G, i# O) y% ]# }注:For complex X, for all the four fuctions the imaginary and real parts are rounded independently8 H2 q5 R* f1 A! ^
0 n/ S4 z. [' b* F4 j3 J6 Y( ?5 S( F0 \* k7 e5 C$ q( t0 `9 O+ q
/ m- Q6 o7 v( ?, [4 J/ h9 g& q |
|