EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。
; V$ f4 g V# c8 V# J; D
+ h" X. [& i- \- T6 A1 C/ J在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data
: l1 u' R& A) u t. R5 B滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。8 k. e6 y9 s; M% p! G' V* A8 }
The following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data.
(以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。
9 P: ]8 h# A9 ]7 R' H! ?! P% D6 Y) `
clc* e$ a) k/ c5 f: h& _% x+ Z
" R' l; c- }* U4 J- / w/ G1 a% n3 Y4 V. e) w. p0 t
! k8 |3 j. g" t- b4 H- _clear+ L4 v( I2 ^ y; j6 h0 J1 z
; A$ q9 k7 L; B y - 6 s( w6 e7 n$ K% Q2 t [6 e
7 J1 ?% g6 g# R4 A
close all
: {2 a0 _: K9 c0 P/ b! v5 t' v# m% b
q9 x+ c. |( ?
$ j% A( Y" L. J6 n$ v1 y* l6 r, Q( m$ @4 k" b* a0 H& h9 U4 O
2 z" S7 X* p( T' E" P1 F
% ?( h2 m+ k3 k2 p% D8 a) p5 X0 {
% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.
! L; U4 V' B7 G6 v
9 R/ y# e; ~3 ~3 \9 h o: _. a9 C- # [' F: H/ c5 d' D8 G+ P9 \
6 c$ V6 a7 i0 a5 T& p2 M; N
load count.dat
& K% W* C/ i s4 P a
0 f5 J) e' Z! v
. j( n- X6 D/ K p, V$ o7 d' B* G! ~! b; M5 D
x = count(:,1);
3 t2 B. w/ T% a3 b/ [3 V
# D* W: w% m' P" b- 4 O1 S. s6 ^$ ~6 c: e& _
- @- t, g ?2 v; c2 f1 L# L, v2 v4 y6 P' n7 e8 F1 y" G& Q Q1 B3 H
" i" B; Z2 F8 n3 l
- ; C' n9 A$ P) i# O2 |
! x% N% R; D3 g; Q, n8 S2 l
% Create the filter coefficient vectors.
5 ^2 _3 P7 _" Z) u4 x% z6 |( Z
0 Y' U7 D Z T2 ]' p+ @" i
, b% e8 I! G- [3 E3 T% D* y/ s4 F2 g0 c' e& w6 f9 n
a = 1;3 V- U# N, b1 {7 l
. U" c# p. ]3 A6 G
' K" m5 r m( D' ~ N6 l
- \$ K' I, W) {- K# R0 hb = [1/4 1/4 1/4 1/4];: d, n$ D; G0 A0 }; {" {
% W B) i% h( P ]8 O- j6 @
- ) j# I& @0 `6 }/ S+ q2 \
1 _- L1 S! _0 ^2 q8 T% ?1 l, o/ [& i' N+ D% ?" `' y4 z7 R
' c, ~" ?" c* L, D/ K0 r I9 {
- * e0 n' D4 ~: |0 e) ~ U" i
( j7 ]/ Q7 Y+ Z, O8 X( ?2 S% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data." {, N7 ]5 W7 N
3 Z$ i* x/ s; @2 O t. U8 u0 W* \7 j5 p
/ @9 M+ y. t+ \- t8 Y) E
* {% \- J Q2 Z- z/ F) dy = filter(b,a,x);
7 ]$ x! O9 h$ I) X2 w
Y+ K( i: M1 K% L; C2 k+ v8 z- & x$ M6 W% x4 ?5 g {
4 |/ o# k, I0 e7 f- }4 U t/ A5 h
! O" H; @3 S/ L2 A- C2 O
|& P7 \, y! z, N+ U9 k3 }+ C8 Z+ I - & Q2 r4 W1 P# W8 E
5 v @, G; E' r4 q8 S9 B0 l
t = 1:length(x);5 @' ? i- v! J
8 M7 v) a- k" T, B8 D$ q( a
6 C8 E8 E' h, o2 \3 h; J4 ]: V5 I a1 h) i. k
plot(t,x,'--',t,y,'-')
" [2 @3 E$ a7 I) O3 ]- s) b* Y) U* k, G# N& _. B& P v ^3 V
- ~% h8 A6 F- k# [/ ~* Y. n
7 c* O& W3 [4 ^
legend('Original Data','Filtered Data')% }- ~, t/ Y' A! g8 c, w
; U7 h9 P5 t: ^3 ~9 T8 t - # v6 n2 V& ^3 F& @: o. ^( E; B
+ [# B$ g3 Z: T. K- D3 W8 ?/ z( K& B2 Q3 @; S- j, l
6 i" _) _6 _) b
! Y3 N3 ~' ^3 e6 q! f' l: R
Modify Amplitude of Data0 h6 \) Y, n" \+ e
This example shows how to modify the amplitude of a vector of data by applying a transfer function.8 D3 B2 J( A: g2 b8 X) c3 J
In digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation 此示例显示如何通过应用传递函数来修改数据矢量的幅度。
5 I" C7 ]8 m h. {在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换 : E. x) \# j( ^$ @1 e# c( u6 p
@( d( G% a) m! x/ N2 Yis the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat.
$ P& r2 r% [4 d* G* K: b' l8 F1 [$ `4 e7 C. ^
clc
+ k8 ]* G9 j: A, I. i, P! O
/ R: H, X8 h7 X2 Y6 @
9 V' u- A+ y5 U& \! z e, y6 O8 K) b6 s! h. l" R* ]
clear
" ~, }/ e$ | K E/ Y1 N( w5 e& Z7 n6 J. `
- / r# L( ~& s" F6 b
( x% s Z0 C+ O& y1 ^' E+ bclose all
s# [& Q; F! B; J" X( x; B3 N E4 ^) K6 Y) m$ Y9 l' W# d; P
- x4 ]: y p9 V3 |5 a1 s5 U9 g5 @: k
0 l4 I$ H, R' q. b y+ T: G0 l* n$ A( u
7 G1 x q) l$ _' E) G/ M8 \ - 5 i* N! k/ l& D4 S4 w: ?/ {
" Z l" C" V1 j; {* v' y% Load the data and assign the first column to the vector x.
8 g5 h9 }- a6 W9 M- [ a+ v! }( F3 f# x7 `7 t
- % a7 p8 ~' u$ c# O
" N" j. m8 Q1 d0 [3 l6 d. P5 w8 U. {load count.dat# d% s" E2 p0 R1 ]
4 ^' r+ Y/ o. N% ?& k% V! g
) k" R* e% [- {3 N# C
$ m, c* `7 S7 n v/ C1 {6 \( V [$ Fx = count(:,1);
* h: @$ W6 G1 F8 e" R3 u* I, }* b
- 5 o4 t8 }0 a$ z& F
# F* Y2 y% t2 L+ v7 W* i+ W6 Z$ o1 h6 H5 G1 ~ P1 [1 t
" N5 m$ }9 C: V) O - # M# o4 g( P6 H% t! L. T0 J5 d1 i
: ?1 m8 x9 K- D9 T; l. l$ M% Create the filter coefficient vectors according to the transfer function .% c% i a- v& @% l I1 d
% Y) E5 a7 X& Z" h
0 T* s8 R9 Z7 o& b) `1 w" w, R, y8 `# ~3 Q1 S
a = [1 0.2];
& q2 J* [' t" u6 d! j& Z/ H2 G0 Y6 K& a! C( ~
- 1 ?/ Z. E' L; p0 L
+ L0 N" b3 C4 Q- ?: V9 g" M
b = [2 3];
/ q/ v; P3 k( J0 D6 p/ S: V' i' K4 K
- , A! u7 A& R* ?
- p/ Q9 M1 X6 b* R( T
( B, d6 D% V4 ^2 W8 s8 o
" c4 K; {" r% M6 ]% U
* C0 u/ C3 X) k' r
% u1 W9 \' V" Q0 G! {+ l) j9 @+ }6 Q% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.* t6 B1 _& `& \8 `4 {4 X3 B( c
6 x9 ?" l3 S: V; k
- ( K/ |3 {! u% D! U
! P- I7 ^7 B$ L" U
y = filter(b,a,x);- i" S- r, P1 j- {+ N6 t0 U
2 r* r6 q [+ H7 N5 s0 X
* Q9 m- \' o! ]! n* r
& S0 _5 _: N2 k* z" M+ A3 K0 m9 j/ }9 X* U& A
6 w/ l1 m6 _, ]7 @$ I& g+ j
- , x7 f) s4 B$ `
0 s( A' N" {% U# e1 M( B0 h
t = 1:length(x);
! E' Y+ `5 F( R' D* w. E- y$ u( L
2 ^# \5 x, y6 K% U7 C z& Z - ( V6 b8 u. B' @4 p
% O0 d+ G2 p1 W: r: m' Z1 |: R. zplot(t,x,'--',t,y,'-')) b. N/ e0 i) F: n" ?. f' ^& v
; p+ M1 ~$ p# t8 D" o
, }; [6 k8 g% ~- ?( e) o* R, k8 {9 y8 H# o3 B+ i# w4 T. \2 R
legend('Original Data','Filtered Data')7 u( x2 S8 l, l2 Q0 x& M
) n, B* O3 ]6 U' `: G3 M, Z: [
6 ]! s% D, |+ h: {. n. Y% i1 m( m+ t; v, U; z8 M8 p9 H
* L: s7 n* E3 K6 y5 \4 s! Z/ Q0 e( h! x t
7 k' \( G! R. I: D$ `1 k& B% {0 i
. c1 ~( u! }1 C9 w! X: }
( F& n! v% m$ M
8 `9 Y' u6 f8 P" v: ~2 E9 [- P |