EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。 $ w* G! b0 g' K" J8 Z0 l" c+ z
- m; Q: I: h8 F0 k在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data2 d# R( U6 E. g3 N: }3 P
滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。
) y8 R1 F/ q& s. @$ E; F! kThe following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data. (以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。 - + g0 k0 m+ P' N5 z% ` S
# _+ N& h+ u4 O: {6 Z nclc' S2 n) r* L% ~1 N. P
$ V: U( Z7 M3 h% T - $ s" {1 @3 c0 @$ C) }/ t
- q' ], d' Y- |% d
clear
5 q2 A0 D) r; Y h8 Y( R
6 Z/ V$ \$ p- y. d0 B - 1 }4 W2 t. e* d; b, f, T) t" Y
/ T! l3 A9 W3 C; g* c7 t" Dclose all* R: `- E( z: g e
% o" s& m5 U, V9 O. k0 O# c
! w- {" g0 d; W _! V; x3 c! Y* ?9 w3 Y1 X
$ a. S1 R# _& M, Z5 \$ l7 d
" |: z2 Q, j6 U: c# k) _' l- 7 |/ p, d G% k: j/ f+ H' @/ w
% Q' B' O* Y5 W- |1 e* n. j% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.
) p8 W2 Q. t1 X" a) k! [2 u' }- d, E+ Q* E) K2 b) K i, Y
- / S# S. \/ D7 I4 e; P5 x! `+ u
* G* [+ v. |2 {2 f
load count.dat: z8 P! X5 k4 w, f! m% c' l. f3 Z
6 e1 }4 D1 {. L# K3 ?0 C
7 i$ r( H& Q6 A! q
6 r) y! P4 }) d& ?( t8 F; Lx = count(:,1);
& B" @# G- F( U3 Z; h
% _) D2 o# M) Z9 d( ?+ J) J( \/ y
, \ j7 d2 ^9 G1 I
- D) j4 B6 V6 T1 i% ~3 ~0 J/ V4 f
4 A0 @) j! g Z
- 6 b" Y: U" A$ ~0 N( X0 o* f5 }
2 |- B: W! n6 ?% R% Create the filter coefficient vectors.3 U+ [5 E) g8 v! {
) Y, Q9 ?+ x2 y' V
% ^; g5 i' n$ ^( z7 @
( ?9 v& n0 O7 J( S: e/ j& ta = 1;
$ l* @4 x7 \' n1 D- t9 g
) ?. U0 _1 P3 K- 1 c3 V$ H5 w( U7 n2 [* [- W! j
) D( S% S2 N6 q, ^8 r
b = [1/4 1/4 1/4 1/4];& i1 ~' G8 F0 \# f( ^/ U3 \" D# B0 E ?
2 L/ Z( b* t. F d# y' [5 o2 D( ?: F - ! _4 s% S# }, Q2 A' U
4 a: r V' S* M3 z, J+ K, {
; M7 S0 q5 S" n, N" |/ f; a( z
& {/ M' s! t7 k$ [# f+ C6 Z
/ V( Y i, S3 u+ [. `* w" G5 ]; ]9 g* x1 {
* [; L* O+ y- }& f6 }% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.
2 a5 J& ]( D) l+ _& I$ j' a4 Z- Q( s4 c, e7 i' ? W
* k6 g0 m3 u! D- D/ ]( L; v
+ D+ O) F5 z: s4 }3 z" R' H* Ry = filter(b,a,x);8 m6 _) ~/ k1 Y) f
# y! O/ G% ?1 Z0 L$ }: ^9 j: ^
- - c6 G; {* O3 a
5 t; T* n; d E5 S. ]
: P. a# J4 f9 t; Q- z: b, ^" X
: ]+ K: V4 W& h& T6 ^+ P
' `; C" G, y! d! U4 R8 ^
' b9 y! L8 t* F, nt = 1:length(x);
, u9 I R9 z8 l& }9 L4 C& ]( j
4 H# z+ u" \. V+ J7 z3 N$ I
; d8 s6 j) {( F2 {' x# J8 R, i, B9 l, g- V3 r0 f# D. G
plot(t,x,'--',t,y,'-')- W% \* I* L% }, b3 V
2 t& o" e) w6 B* g" {& m }
- # ^& @; C( w5 F' s
! m) b/ f. c0 v
legend('Original Data','Filtered Data')) {3 d; [6 m4 V; i6 d
1 D$ b; X/ i' _2 e' f
- 4 K" F- `/ l1 z+ p- ^3 O
0 u; P# O; J% i5 i. N3 ^
?2 [" K: V! N+ k5 ~1 C3 z/ a
/ \ M0 m( r$ S3 c& N) n! R( n. y* R, N! M' `# t0 q
Modify Amplitude of Data
- L2 ~% ?! [6 E: ]9 @/ tThis example shows how to modify the amplitude of a vector of data by applying a transfer function./ I% ]( L% L! s* d
In digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation
此示例显示如何通过应用传递函数来修改数据矢量的幅度。
. v( e1 w. o2 N, m. ?在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换
) j& t0 c# y/ O- K4 L, R9 F/ U
( Q3 @. |$ h0 S, w# R$ g; a
is the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat. - 3 A* Z7 v# f' [6 T6 M$ ~4 D( t
) e. u8 F7 L: ~5 B
clc* T2 {, B3 m9 _. f
& H. h9 U- {, W( y - $ d! H/ ]$ V' p+ H' z4 L
8 Q& Q1 G6 ^2 q5 ^; N$ E1 H8 R+ {$ dclear* [# T1 d' E$ R" `) r( {7 R
2 ~) ~1 Y3 {) Z1 u9 j# o5 N* O: y
- + `8 q8 s- ]5 f. P
/ ]2 e/ t6 r( V/ zclose all
$ ]* D( a6 b/ o6 v+ Z( V, Y! t+ h' M. `0 Z% {3 _7 W
- 1 G, i9 \' q% z- V) p" ?! M, C
" r* `( K. A0 c$ `4 Y
$ V0 e0 ^, O6 T* M6 t' R- \
6 G( a! c, W- @$ W( m - 5 u0 Q3 T' }, Q' u
" h1 y# p! M+ ]4 U7 D
% Load the data and assign the first column to the vector x.
. G' V, }+ W0 E6 H5 O# |: D3 K C! U9 z9 Y6 R* C$ a4 T+ h$ C7 G
6 q1 W- _ |! X& E/ W$ s3 {+ r$ L' C$ p" W$ X' o% P+ Z1 z2 y
load count.dat
0 H3 i5 ^) c) }: {) C
7 o. Q* J1 s# a, R! k$ q7 o- ; K) I# Z5 K: y* H: o
5 u2 @& x! A9 F8 c9 o1 }3 qx = count(:,1);3 p7 ?/ ~( G9 k: [' T
X+ w2 U. v' r3 i
! a+ @' d% n3 f& z6 J8 e9 T3 ~ o( J; A$ j: X! P
# V- s% ^* y0 M- z, k* z, x
. ? j4 i3 Z% P3 i6 R5 e) M- / W: r: T2 f+ B- Y# S& `' Y
8 K0 ^( ^- o# c; e0 m! F- C: `
% Create the filter coefficient vectors according to the transfer function .3 e K6 v0 m0 L
3 H x3 c# @; _
- 4 R, i, T3 O; L" D" T- A
! E: z: j Y, V& P( J+ @
a = [1 0.2];: d' I. P( X! H5 t5 O
- u+ n( O2 P6 t1 J) W+ H
/ n/ c9 h/ e: e2 E7 p1 e
% f3 @ S+ T* P+ [* A1 Y. ub = [2 3];
2 i. a# H2 M( }3 ? |9 E9 Z+ G# Q0 S. F% ~5 Z
/ ?6 W; z0 N; n1 l! D% |# B$ ~! u- W
8 o- p3 ~: p8 h% \. E K
$ r8 n5 e5 Q8 X9 J/ j/ M1 E
- 9 W3 c0 R9 R5 R4 [; v
( ?3 D. e5 A5 l' o3 a& ]2 W$ J" \% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.8 _8 F& ^9 G1 N* k$ M, o ^- A2 J
3 F+ ?# t2 ?6 \# o8 Y2 Y. Q
- 0 q3 S8 m% d) w7 F
7 p" G# \+ v" Q2 p$ |
y = filter(b,a,x);- Z c a) O: z
( G4 P( A/ ?- f: [& M3 q
' x: S0 y0 A* j! w0 T) g, T: Q( U6 H0 R
6 S4 V2 |4 C* j! _" I. ~7 \: p/ J
( E: x/ y8 d* q, g' H. e! ?* B4 s- ; u! l$ a" {( ^
- H4 z5 q N2 o0 y! v6 N; ct = 1:length(x);
2 r5 a v: p% d( i* R/ C* H# `6 U
- " L: g9 Q% q+ [
' j3 M2 T4 n8 r' k9 M% n
plot(t,x,'--',t,y,'-')# D; q7 m9 v8 @. V& M
' G) h, Z" k }- `) [5 t% s3 W* l - ' ^# l/ u, a0 d \- r" f" e' P. w. L! `
3 X! _- }$ i- L5 v, ~" V# r! T2 ?legend('Original Data','Filtered Data')& o! o! X5 d0 I* f
! o. l# ?; ^8 s, e+ Q$ b7 Y H6 X
4 N+ y3 Z$ ^: q% [+ Y9 M: a" n, T
- H0 }4 z0 k; t
0 M2 N, \( Z# `# w# g# Q |- {
( M; n3 j1 c4 p* I+ D6 P) C
4 e& Y2 |% u# x: o; |- {7 x$ U" E* H+ G
, Y$ o& Y7 n, @' E+ H$ j |