找回密码
 注册
关于网站域名变更的通知
查看: 332|回复: 1
打印 上一主题 下一主题

MATLAB全部的随机函数(一)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-8-31 14:56 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Matlab内部函数
a. 基本随机数
Matlab中有两个最基本生成随机数的函数。
1.rand()
生成(0,1)区间上均匀分布的随机变量。基本语法:
rand([M,N,P ...])
4 f/ d4 P6 q# q9 i& j
生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
rand(5,1) %生成5个随机数排列的列向量,一般用这种格式
rand(5) %生成5行5列的随机数矩阵
rand([5,4]) %生成一个5行4列的随机数矩阵
, x" x& E1 t% O& ]! z
生成的随机数大致的分布。
x=rand(100000,1);
hist(x,30);

  }7 b) n* V+ V8 |& x
由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用)
2.randn()
生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。
randn([M,N,P ...])
9 n) c+ t5 T; E& p3 a4 J- B8 P
生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
randn(5,1) %生成5个随机数排列的列向量,一般用这种格式
randn(5) %生成5行5列的随机数矩阵
randn([5,4]) %生成一个5行4列的随机数矩阵
, ?3 u! u9 B; s) n: P2 u- S
生成的随机数大致的分布。
x=randn(100000,1);
hist(x,50);
; T9 E0 H. h# V( g9 R# ]/ V9 Q3 ?6 L% i
由图可以看到生成的随机数很符合标准正态分布。
b. 连续型分布随机数
如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。
3.unifrnd()
和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法
unifrnd(a,b,[M,N,P,...])

6 i8 M7 j, X$ ]% ?" i3 u8 g
生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
unifrnd(-2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式
unifrnd(-2,3,5) %生成5行5列的随机数矩阵
unifrnd(-2,3,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数都在(-2,3)区间内.
0 h# P7 L/ n/ Q! z- c! h$ F
生成的随机数大致的分布。
x=unifrnd(-2,3,100000,1);
hist(x,50);
! t9 [% E9 P3 \# R
由图可以看到生成的随机数很符合区间(-2,3)上面的均匀分布。
4.normrnd()
和randn()类似,此函数生成指定均值、标准差的正态分布的随机数。基本语法
normrnd(mu,sigma,[M,N,P,...])
3 D9 P7 J4 Z: e2 m
生成的随机数服从均值为mu,标准差为sigma(注意标准差是正数)正态分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
normrnd(2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式
normrnd(2,3,5) %生成5行5列的随机数矩阵
normrnd(2,3,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的正态分布都是均值为2,标准差为3.
- I* N! Y% Y! G) g) J: @+ s
生成的随机数大致的分布。
x=normrnd(2,3,100000,1);
hist(x,50);

% j# D% @1 U: E+ I. F% m
- s/ c& {& p& s/ N2 }; Z5 G
$ M: o" O" n8 \$ _
如图,上半部分是由上一行语句生成的均值为2,标准差为3的10万个随机数的大致分布,下半部分是用小节“randn()”中最后那段语句生成10万个标准正态分布随机数的大致分布。
注意到上半个图像的对称轴向正方向偏移(准确说移动到x=2处),这是由于均值为2的结果。
而且,由于标准差是3,比标准正态分布的标准差(1)要高,所以上半部分图形更胖(注意x轴刻度的不同)。
5.chi2rnd()
此函数生成服从卡方(Chi-square)分布的随机数。卡方分布只有一个参数:自由度v。基本语法
chi2rnd(v,[M,N,P,...])
: a4 g% Q* f8 v
生成的随机数服从自由度为v的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
chi2rnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式
chi2rnd(5,5) %生成5行5列的随机数矩阵
chi2rnd(5,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的卡方分布的自由度都是5
& L2 r, g; Z" W. b* `
生成的随机数大致的分布。
x=chi2rnd(5,100000,1);
hist(x,50);

" K6 F" q; O% e8 p# n
6.frnd()
此函数生成服从F分布的随机数。F分布有2个参数:v1, v2。基本语法
frnd(v1,v2,[M,N,P,...])
/ B; w7 q- p; X
生成的随机数服从参数为(v1,v2)的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
frnd(3,5,5,1) %生成5个随机数排列的列向量,一般用这种格式
frnd(3,5,5) %生成5行5列的随机数矩阵
frnd(3,5,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的参数为(v1=3,v2=5)的F分布

( j/ K/ |& u; y; k* B
生成的随机数大致的分布。
x=frnd(3,5,100000,1);
hist(x,50);
7 K* p6 [) k# B
从结果可以看出来, F分布集中在x正半轴的左侧,但是它在极端值处也很可能有一些取值。
7.trnd()
此函数生成服从t(Student's t Distribution,这里Student不是学生的意思,而是Cosset.W.S.的笔名)分布的随机数。t分布有1个参数:自由度v。基本语法
trnd(v,[M,N,P,...])

* o& y0 S/ ]8 }: P4 u6 \8 C
生成的随机数服从参数为v的t分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
trnd(7,5,1) %生成5个随机数排列的列向量,一般用这种格式
trnd(7,5) %生成5行5列的随机数矩阵
trnd(7,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的参数为(v=7)的t分布

: E: S1 U) Q5 x* E, I
生成的随机数大致的分布。
x=trnd(7,100000,1);
hist(x,50);
5 L& [+ q' G! a+ S7 S
可以发现t分布比标准正太分布要“瘦”,不过随着自由度v的增大,t分布会逐渐变胖,当自由度为正无穷时,它就变成标准正态分布了。
接下来的分布相对没有这么常用,同时这些函数的语法和前面函数语法相同,所以写得就简略一些——在视频中也不会讲述,你只需按照前面那几个分布的语法套用即可,应该不会有任何困难——时间足够的话这是一个不错的练习机会。
8.betarnd()
此函数生成服从Beta分布的随机数。Beta分布有两个参数分别是A和B。下图是A=2,B=5 的beta分布的PDF图形。
. @. V2 r& \5 u  a+ }* r$ w
生成beta分布随机数的语法是:
betarnd(A,B,[M,N,P,...])

3 ]+ d" U% \4 R& M, _& x
9.exprnd()
此函数生成服从指数分布的随机数。指数分布只有一个参数: mu, 下图是mu=3时指数分布的PDF图形
% X- t# X3 i( M$ p% I
生成指数分布随机数的语法是:
betarnd(mu,[M,N,P,...])
: A* c0 A* w; F7 U
10.gamrnd()
生成服从Gamma分布的随机数。Gamma分布有两个参数:A和B。下图是A=2,B=5 Gamma分布的PDF图形
% I% l. ^7 j; F2 e
生成Gamma分布随机数的语法是:
gamrnd(A,B,[M,N,P,...])
( R/ F- ?. ~; @6 l9 \! t
  • TA的每日心情
    开心
    2022-12-5 15:37
  • 签到天数: 2 天

    [LV.1]初来乍到

    2#
    发表于 2020-8-31 15:46 | 只看该作者
    来学习学习
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-7-27 15:04 , Processed in 0.109375 second(s), 23 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表