|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
' K* E7 k+ L* G4 F主要思想
% V- m/ q$ `) ?4 H$ @+ i) Z4 p0 C( x, g5 q& m
" H4 N! L& t( s! O D, g7 t# v% \ F) [, X
流程图
- E( ~$ g: \* Q# v1 i
4 V" b% i- u0 r0 y x
f7 ~, B1 a5 U: y3 u9 O- G
7 |* ?, y* b6 A- t# a7 _- F. X$ n! M
- M; l$ e# J, a. j- W7 J3 f( BMATLAB代码- @2 K9 T8 c G8 p# O( ~
: P& s) x4 J7 R8 }0 c7 S) f
- function [bestMin, bestID] = ILSSIWBA()
- %A new bat algorithm based on iterative local search and stochastic inertia weight
- %omegaxyz.com QQ: 644327005
- clc;
- %% 经典BA参数设置
- t = 1;
- maxT = 100; %最大迭代次数
- dim = 30; %问题的维度
- sizep = 50; %种群大小
- xmin = -0.5;
- xmax = 0.5; %位置向量的范围
- A = 0.6.*ones(sizep,1); % 响度 (不变或者减小)
- r = zeros(sizep,1); % 脉冲率 (不变或增加))
- Qmin = 0; % 最小频率
- Qmax = 1; % 最大频率
- %% 初始化
- Lb = xmin*ones(1,dim);
- Ub = xmax*ones(1,dim);
- pop = Lb+(Ub-Lb).*rand(sizep,dim); %种群初始化
- popv = zeros(sizep,dim); % 速度
- Q = zeros(sizep,1); % 频率
- pfitness = zeros(dim,1);
- for i = 1:sizep
- pfitness(i) = evaluate2(pop(i,:)); %评价
- end
- [bestMin, bestID]=min(pfitness);
- bestS = pop(bestID, :);
- bestArchive = zeros(maxT,1);
- %% 论文中的新策略参数
- umin = 0.4; %The second modification (SIW method)
- umax = 0.9;
- sigma = 0.2;
- R0 = 0.1; %The 3th modification
- Rupper = 0.7;
- A0 = 0.9;
- Alower = 0.6;
- %% 具体迭代过程
- while t <= maxT
- for i = 1:sizep
- Q(i)=Qmin+(Qmin-Qmax)*rand();
- w = umin +(umax-umin)*rand()+sigma*randn(); %The second modification (SIW method)
- popv(i,:)=w*popv(i,:)+(pop(i,:)-bestS)*Q(i); %The second modification (SIW method)
- Stemp = pop(i,:)+popv(i,:);
- % 脉冲率
- if rand>r(i)
- Stemp=bestS-1+2*rand(1,dim);
- end
- fitTemp = evaluate2(Stemp);
- if (fitTemp<=pfitness(i))&&(rand()<A(i))
- pop(i,:) = Stemp;
- pfitness(i) = fitTemp;
- A(i) = (A0-Alower)/(1-maxT)*(t-maxT)+Alower; %The 3th modification
- r(i) = (R0-Rupper)/(1-maxT)*(t-maxT)+Rupper; %The 3th modification
- end
- if fitTemp <= bestMin
- bestID = i;
- bestMin = fitTemp;
- bestS = Stemp;
- end
- end
- interX = bestS.*rand(); %The 1th modification (ILS method)
- interXfit = evaluate2(interX);
- if interXfit < bestMin
- bestMin = interXfit;
- bestS = interX;
- pop(bestID,:) = bestS;
- pfitness(bestID,:) = bestMin;
- else
- if exp(bestMin-interXfit) > rand()
- bestMin = interXfit;
- bestS = interX;
- pop(bestID,:) = bestS;
- pfitness(bestID,:) = bestMin;
- end
- end
- bestArchive(t) = bestMin;
- fprintf('GEN: %d min: %.4f\n', t, bestMin);
- t = t +1;
- end
- end%.m end
% z: a) _8 b3 E9 a5 `% }6 r/ I " U1 @1 D- I1 k. F D
0 a& P4 @5 \ P4 }评价函数:2 \8 K5 N s! G+ \7 K8 T
1 t. N3 {. j4 g2 f z- function z = evaluate2(u)
- %Weierstrass
- dim= length(u);
- sum_1=0;
- sum_2=0;
- sum_3=0;
- a = 0.5;
- b = 3;
- for i=1:dim
- for k=0:30
- sum_1=sum_1+(a^k)*(cos(2*pi*(b^k)*(u(i)+0.5)));
- end
- sum_2=sum_2+sum_1;
- sum_1 = 0;
- end
- for k=0:30
- sum_3=sum_3+(a^k)*(cos(2*pi*(b^k)*0.5));
- end
- z=sum_2-dim*sum_3;
- end! R( _8 ?+ ~5 R
6 @2 Y3 c0 a- w- M0 x0 Q
6 Q3 J+ ~9 b x( b( Y
|
|