|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。
' g' Z+ m7 L! b9 o1 n+ P
- e. m% A! X5 J2 s( r9 _! I; z. ]/ s特征选择步骤3 w5 E, `/ A/ k' X* D
+ i/ q' H& X/ t8 E& ~# j8 ?$ W( `①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。* V- O+ N& Y$ z) R4 T
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。
6 `5 m9 N5 R& b③利用SVM训练
5 p! j1 X" o5 {# Z% V④训练结果在测试集上判断错误率
) ^4 f* `, E8 c- z2 C
* a: T4 g) ^0 ?5 kMATLAB代码:& K) X, N0 v; N$ }+ O1 @
* a# T$ M! |3 O- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);& x/ e J2 J' Q6 y8 n
|
|