|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
* i! _( b+ Q* G6 {3 ~) Q! TNSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。, `/ Y/ o0 c# G! e+ F# n
" O) v6 L1 K: c: A- d) M
6 u0 N1 D9 s' Q) |
% _8 }& z. D/ u fNSGA2的过程为:" U2 F( j! A3 C2 U4 i. E+ _* r0 D; }
& _' J, K) D; S* H+ Y j5 g- b
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N9 ~2 i: i% S$ o" a' y$ p2 ~
- w! _* N) W4 |3 v( o2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
3 _" p) f# K/ r1 {, b. `- o) i) Q6 a: x
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
, T0 H8 b0 O% b [7 k; \6 Q
1 c j$ ?4 F$ Q7 {; o' a
& `) p& l: v. A; u! q( }3 b0 [, M$ ]" Z& y/ J7 s, A
下面是完整版的代码:' ]$ F+ y* u) x$ w P
2 ]' T3 y% w8 x& I①nsga2-optimization.m, \2 D) Q8 r- j8 Q" r
# [+ o4 O7 C6 v' k; b- function nsga_2_optimization
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %此处可以更改
- %更多机器学习内容请访问omegaxyz.com
- pop = 500; %种群数量
- gen = 500; %迭代次数
- M = 2; %目标数量
- V = 30; %维度
- min_range = zeros(1, V); %下界
- max_range = ones(1,V); %上界
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- chromosome = initialize_variables(pop, M, V, min_range, max_range);
- chromosome = non_domination_sort_mod(chromosome, M, V);
- for i = 1 : gen
- pool = round(pop/2);
- tour = 2;
- parent_chromosome = tournament_selection(chromosome, pool, tour);
- mu = 20;
- mum = 20;
- offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
- [main_pop,~] = size(chromosome);
- [offspring_pop,~] = size(offspring_chromosome);
- clear temp
- intermediate_chromosome(1:main_pop,:) = chromosome;
- intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
- intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
- chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
- if ~mod(i,100)
- clc;
- fprintf('%d generations completed\n',i);
- end
- end
- if M == 2
- plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
- xlabel('f_1'); ylabel('f_2');
- title('Pareto Optimal Front');
- elseif M == 3
- plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
- xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
- title('Pareto Optimal SuRFace');
- end
$ E1 Z# v7 R* K
0 ~& K; O$ F9 u$ J @: c2 e ^( G: O
②initialize_variables.m# I/ t9 v8 Z) o4 L1 A& i- j
" D" I1 Y* z8 g* s0 }- function f = initialize_variables(N, M, V, min_range, max_range)
- min = min_range;
- max = max_range;
- K = M + V;
- for i = 1 : N
- for j = 1 : V
- f(i,j) = min(j) + (max(j) - min(j))*rand(1);
- end
- f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
- end
' V7 o; A& d. B+ K! A
' {3 M9 {( h) k& i# M1 {1 H% m
7 U- g7 L- j) H. x$ h j- K③non_domination_sort_mod.m
& C: |) R" s: X' ]0 Y& P
! L/ s: I. G6 n7 W+ \& |- function f = non_domination_sort_mod(x, M, V)
- [N, ~] = size(x);
- clear m
- front = 1;
- F(front).f = [];
- individual = [];
- for i = 1 : N
- individual(i).n = 0;
- individual(i).p = [];
- for j = 1 : N
- dom_less = 0;
- dom_equal = 0;
- dom_more = 0;
- for k = 1 : M
- if (x(i,V + k) < x(j,V + k))
- dom_less = dom_less + 1;
- elseif (x(i,V + k) == x(j,V + k))
- dom_equal = dom_equal + 1;
- else
- dom_more = dom_more + 1;
- end
- end
- if dom_less == 0 && dom_equal ~= M
- individual(i).n = individual(i).n + 1;
- elseif dom_more == 0 && dom_equal ~= M
- individual(i).p = [individual(i).p j];
- end
- end
- if individual(i).n == 0
- x(i,M + V + 1) = 1;
- F(front).f = [F(front).f i];
- end
- end
- while ~isempty(F(front).f)
- Q = [];
- for i = 1 : length(F(front).f)
- if ~isempty(individual(F(front).f(i)).p)
- for j = 1 : length(individual(F(front).f(i)).p)
- individual(individual(F(front).f(i)).p(j)).n = ...
- individual(individual(F(front).f(i)).p(j)).n - 1;
- if individual(individual(F(front).f(i)).p(j)).n == 0
- x(individual(F(front).f(i)).p(j),M + V + 1) = ...
- front + 1;
- Q = [Q individual(F(front).f(i)).p(j)];
- end
- end
- end
- end
- front = front + 1;
- F(front).f = Q;
- end
- [temp,index_of_fronts] = sort(x(:,M + V + 1));
- for i = 1 : length(index_of_fronts)
- sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
- end
- current_index = 0;
- %% Crowding distance
- for front = 1 : (length(F) - 1)
- distance = 0;
- y = [];
- previous_index = current_index + 1;
- for i = 1 : length(F(front).f)
- y(i,:) = sorted_based_on_front(current_index + i,:);
- end
- current_index = current_index + i;
- sorted_based_on_objective = [];
- for i = 1 : M
- [sorted_based_on_objective, index_of_objectives] = ...
- sort(y(:,V + i));
- sorted_based_on_objective = [];
- for j = 1 : length(index_of_objectives)
- sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
- end
- f_max = ...
- sorted_based_on_objective(length(index_of_objectives), V + i);
- f_min = sorted_based_on_objective(1, V + i);
- y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
- = Inf;
- y(index_of_objectives(1),M + V + 1 + i) = Inf;
- for j = 2 : length(index_of_objectives) - 1
- next_obj = sorted_based_on_objective(j + 1,V + i);
- previous_obj = sorted_based_on_objective(j - 1,V + i);
- if (f_max - f_min == 0)
- y(index_of_objectives(j),M + V + 1 + i) = Inf;
- else
- y(index_of_objectives(j),M + V + 1 + i) = ...
- (next_obj - previous_obj)/(f_max - f_min);
- end
- end
- end
- distance = [];
- distance(:,1) = zeros(length(F(front).f),1);
- for i = 1 : M
- distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
- end
- y(:,M + V + 2) = distance;
- y = y(:,1 : M + V + 2);
- z(previous_index:current_index,:) = y;
- end
- f = z();" _4 ?7 o* W) ^$ K
6 W2 j$ r; d( \- }
3 p9 o @. i! y/ ]8 Q+ a) l ④tournament_selection.m& z) n2 b4 a, L% _* r1 @. E8 j9 C
- function f = tournament_selection(chromosome, pool_size, tour_size)
- [pop, variables] = size(chromosome);
- rank = variables - 1;
- distance = variables;
- for i = 1 : pool_size
- for j = 1 : tour_size
- candidate(j) = round(pop*rand(1));
- if candidate(j) == 0
- candidate(j) = 1;
- end
- if j > 1
- while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
- candidate(j) = round(pop*rand(1));
- if candidate(j) == 0
- candidate(j) = 1;
- end
- end
- end
- end
- for j = 1 : tour_size
- c_obj_rank(j) = chromosome(candidate(j),rank);
- c_obj_distance(j) = chromosome(candidate(j),distance);
- end
- min_candidate = ...
- find(c_obj_rank == min(c_obj_rank));
- if length(min_candidate) ~= 1
- max_candidate = ...
- find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
- if length(max_candidate) ~= 1
- max_candidate = max_candidate(1);
- end
- f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
- else
- f(i,:) = chromosome(candidate(min_candidate(1)),:);
- end
- end
+ W( a9 L* _7 U4 h X! T7 L 9 u$ T1 U% v: o. w o, \8 Q Z
3 L, o- a2 d0 l8 v) F2 u1 D⑤genetic_operator.m9 ?( O$ V; F( z3 q
5 c8 i9 V+ ^, b6 [ F/ P# p; F7 B
- function f = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
- [N,m] = size(parent_chromosome);
- clear m
- p = 1;
- was_crossover = 0;
- was_mutation = 0;
- for i = 1 : N
- % With 90 % probability perform crossover
- if rand(1) < 0.9
- % Initialize the children to be null vector.
- child_1 = [];
- child_2 = [];
- % Select the first parent
- parent_1 = round(N*rand(1));
- if parent_1 < 1
- parent_1 = 1;
- end
- % Select the second parent
- parent_2 = round(N*rand(1));
- if parent_2 < 1
- parent_2 = 1;
- end
- % Make sure both the parents are not the same.
- while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
- parent_2 = round(N*rand(1));
- if parent_2 < 1
- parent_2 = 1;
- end
- end
- % Get the chromosome information for each randomnly selected
- % parents
- parent_1 = parent_chromosome(parent_1,:);
- parent_2 = parent_chromosome(parent_2,:);
- % Perform corssover for each decision variable in the chromosome.
- for j = 1 : V
- % SBX (Simulated Binary Crossover).
- % For more information about SBX refer the enclosed pdf file.
- % Generate a random number
- u(j) = rand(1);
- if u(j) <= 0.5
- bq(j) = (2*u(j))^(1/(mu+1));
- else
- bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
- end
- % Generate the jth element of first child
- child_1(j) = ...
- 0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
- % Generate the jth element of second child
- child_2(j) = ...
- 0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
- % Make sure that the generated element is within the specified
- % decision space else set it to the appropriate extrema.
- if child_1(j) > u_limit(j)
- child_1(j) = u_limit(j);
- elseif child_1(j) < l_limit(j)
- child_1(j) = l_limit(j);
- end
- if child_2(j) > u_limit(j)
- child_2(j) = u_limit(j);
- elseif child_2(j) < l_limit(j)
- child_2(j) = l_limit(j);
- end
- end
- child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
- child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
- was_crossover = 1;
- was_mutation = 0;
- % With 10 % probability perform mutation. Mutation is based on
- % polynomial mutation.
- else
- % Select at random the parent.
- parent_3 = round(N*rand(1));
- if parent_3 < 1
- parent_3 = 1;
- end
- % Get the chromosome information for the randomnly selected parent.
- child_3 = parent_chromosome(parent_3,:);
- % Perform mutation on eact element of the selected parent.
- for j = 1 : V
- r(j) = rand(1);
- if r(j) < 0.5
- delta(j) = (2*r(j))^(1/(mum+1)) - 1;
- else
- delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
- end
- % Generate the corresponding child element.
- child_3(j) = child_3(j) + delta(j);
- % Make sure that the generated element is within the decision
- % space.
- if child_3(j) > u_limit(j)
- child_3(j) = u_limit(j);
- elseif child_3(j) < l_limit(j)
- child_3(j) = l_limit(j);
- end
- end
- child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
- % Set the mutation flag
- was_mutation = 1;
- was_crossover = 0;
- end
- if was_crossover
- child(p,:) = child_1;
- child(p+1,:) = child_2;
- was_cossover = 0;
- p = p + 2;
- elseif was_mutation
- child(p,:) = child_3(1,1 : M + V);
- was_mutation = 0;
- p = p + 1;
- end
- end
- f = child;
* ^- [; W0 K" v! [7 Z
+ j% ]2 x9 d/ @
- C9 y" i4 n0 g1 J D ⑥replace_chromosome.m% c+ G1 Z5 h6 K; r
/ S* L& P3 O$ [- function f = replace_chromosome(intermediate_chromosome, M, V,pop)
- [N, m] = size(intermediate_chromosome);
- % Get the index for the population sort based on the rank
- [temp,index] = sort(intermediate_chromosome(:,M + V + 1));
- clear temp m
- % Now sort the individuals based on the index
- for i = 1 : N
- sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);
- end
- % Find the maximum rank in the current population
- max_rank = max(intermediate_chromosome(:,M + V + 1));
- % Start adding each front based on rank and crowing distance until the
- % whole population is filled.
- previous_index = 0;
- for i = 1 : max_rank
- % Get the index for current rank i.e the last the last element in the
- % sorted_chromosome with rank i.
- current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
- % Check to see if the population is filled if all the individuals with
- % rank i is added to the population.
- if current_index > pop
- % If so then find the number of individuals with in with current
- % rank i.
- remaining = pop - previous_index;
- % Get information about the individuals in the current rank i.
- temp_pop = ...
- sorted_chromosome(previous_index + 1 : current_index, :);
- % Sort the individuals with rank i in the descending order based on
- % the crowding distance.
- [temp_sort,temp_sort_index] = ...
- sort(temp_pop(:, M + V + 2),'descend');
- % Start filling individuals into the population in descending order
- % until the population is filled.
- for j = 1 : remaining
- f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
- end
- return;
- elseif current_index < pop
- % Add all the individuals with rank i into the population.
- f(previous_index + 1 : current_index, :) = ...
- sorted_chromosome(previous_index + 1 : current_index, :);
- else
- % Add all the individuals with rank i into the population.
- f(previous_index + 1 : current_index, :) = ...
- sorted_chromosome(previous_index + 1 : current_index, :);
- return;
- end
- % Get the index for the last added individual.
- previous_index = current_index;
- end
# N: J" x# R7 W8 ?
8 @( X2 j: w6 P2 ], r. c* j
# Y6 ~* K; W, V ⑦自定义评价函数(我选用的ZDT1函数)0 f6 l. A6 Q, k& f
: h* J) G/ |3 J" g) o8 l- function f = evaluate_objective(x, M, V)
- f = [];
- f(1) = x(1);
- g = 1;
- sum = 0;
- for i = 2:V
- sum = sum + x(i);
- end
- g = g + 9*sum / (V-1));
- f(2) = g * (1 - sqrt(x(1) / g));
- end
* L3 m) \/ O/ T# B) U9 ` $ T/ e3 p1 |" d( Z b9 b
2 U1 r: L; K, R1 ~
500个种群运行500代的结果:
0 M" R! C& B) l" U$ B7 ^ N2 n6 l3 E5 x; w- L$ s) |$ Y
) W0 h: T4 C- U6 ~
/ F$ c+ P& o! ] S: z3 _4 f/ v
, [3 N1 e: Y) ^
: m! y' \1 O4 ]4 B# H" G2 ]) L
$ k- c) D4 |! f$ }2 d |
|