|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
( e8 W) D( U" J. c7 |1 O合作协同进化(Cooperative Coevolution)是求解大规模优化算法一个有效的方法。将大规模问题分解为一组组较小的子问题。而合作协同进化的关键是分解策略。
& n3 l! Q8 a+ ^5 h: M( h0 ]; R1 B6 v& d- G2 d$ k) } t9 A
NSGA2算法是一种多目标遗传算法。此文章是随机固定分组的合作协同进化利用NSGA2来优化。
0 k3 ]& R6 d4 R5 A- `7 `' e$ v2 w; c
' ^1 A. I5 r& @& M/ P1 z6 Z5 ~" X% K比如有12个决策变量,我们固定随机优化3个决策变量,那么就将决策变量分成了4组。+ F( U. I/ Y; p
+ D5 m' m# P( I1 ^% {" `! DMATLAB主函数代码:6 M* |+ S% Y& U6 D
8 T# b1 q6 E* t/ w9 T, @/ ~# ]
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- clc;
- clear;
- global pop
- pop = 500; %种群数量
- gen = 2; %迭代次数
- global M
- M = 2; %目标数量
- Dim=22; %搜索空间维数(未知数个数)
- sub_dim= 2 ;
- global min_range
- global max_range
- min_range = zeros(1, Dim); %下界
- max_range = ones(1,Dim); %上界
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- divide_datasets();
- global answer
- answer=cell(M,3);
- Dim_index = ones(1,1)*(1[color=rgb(0, 111, 224) !important]: Dim+4);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- chromosome = initialize_variables(pop, M, Dim, min_range, max_range, Dim_index);
- chromosome = non_domination_sort_mod(chromosome, M, Dim);
- result = 1;
- while gen ~= 0
- subgroup = rnd_divide(Dim, sub_dim);
- for i=1:length(subgroup)
- subgroup{i}(sub_dim+1)=Dim+1;
- subgroup{i}(sub_dim+2)=Dim+2;
- subgroup{i}(sub_dim+3)=Dim+3;
- subgroup{i}(sub_dim+4)=Dim+4;
- [temp_chromosome] = nsga2(chromosome(:,subgroup{i}), sub_dim, subgroup{i});
- chromosome(:,subgroup{i}(1:sub_dim)) = temp_chromosome(:,1:sub_dim);
- end
- chromosome = nsga2(chromosome, Dim, Dim_index);
- chromosome = non_domination_sort_mod(chromosome, M, Dim);
- gen =gen - 1;
- progress = 1-gen/10
- end
- plot(chromosome(:,Dim + 1),chromosome(:,Dim + 2),'*');
- xlabel('f_1'); ylabel('f_2');
- title('Pareto Optimal Front');
! t' { H3 k1 a ! r6 `7 y) C- [ P' W! c! u1 q1 V
7 Q+ P: A9 U. [. D/ G3 m随机分组代码:7 ^/ V! A% I A* V
/ {0 D; D' s. w: l5 E$ e- % random grouping
- function group = rnd_divide(dim, subdim)
- dim_rand = randperm(dim);
- group = {};
- for i = 1:subdim:dim
- index = dim_rand(i:i+subdim-1);
- group = {group{1:end} index};
- end
- end. W7 g* I9 F( k2 E$ L* d4 j' }& J# H
|
|