TA的每日心情 | 怒 2019-11-20 15:22 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
( N2 g* d8 j$ ]. T(1)序列前向选择( SFS , Sequential Forward Selection )
+ e. `1 Z) ?. Y$ F
8 d' c, ^! J8 @7 B, G# t算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。
: R9 F5 ~+ ~2 S) u5 B/ U
- b! }& `& \+ X, Y" s
8 |& k, _( O1 t) s
$ Y) h, |6 P$ N* Z8 Y& Q, Z
6 D2 ]( J/ K9 x$ `5 G* z
: [* A/ Q9 _: { m7 }8 u$ ], U' v算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。* G( l4 F% j" N4 b* k
3 I7 g; ^- k/ L( ^% [' g代码:4 B( t: P% Z: D/ b8 [9 C6 u# z
/ N- R. T1 i% C: d2 Q, ^5 S! b- %----4.17编 顺序前进法特征选择 成功!
3 Z; y, H7 N0 [5 o- clear;
- clc;
- %--------特征导入 请自行修改
9 L3 t \3 H6 C/ ~/ U& r0 r4 e) |3 r- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
( Y$ V9 [, \* \/ K" ^/ }- % for i=1:96
- ( C$ H B& M; N5 _
- % wfeature{30+i}=feature(:,i);
- ( `8 m* Z& O: P: W
- % end
$ {/ `" ]8 n. w# B3 f& s- %%%%%%%----------归一化
- Q4 l$ U5 T5 N3 A2 w5 [
- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
- . W: C1 D, l4 m; m& C3 m: s$ G
- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
7 J$ V2 A( ^2 B' y/ P! B; h- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- : ^8 k; }3 q0 R" s) m
- g=reshape(cc,M,N);
- figure,imshow(g);( {/ K/ }: N- u1 \
2 y$ C2 e2 m/ A/ t; ^. y. ?
" A4 o' C8 B4 ]1 y8 W: ~7 g7 a0 o(2)序列后向选择( SBS , Sequential Backward Selection )9 N8 X5 V* q. `: I. K& i$ n/ C
( ]3 Y' W. J$ M0 q$ o7 E9 p
算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。( L c) }* O6 W0 X6 l
8 b- A8 Y4 L/ p7 m \: \9 h算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。( }6 D4 }; v" |. [. Q9 ~
! e; r; k: e1 o9 [
5 g1 _! i- q$ ]) e) b1 f- P/ G6 ~" N Z" d$ Y, Y" d
代码:
1 i7 {* K% o7 B/ p5 {2 L0 l% z. E- n, ~/ H# i( w7 b
- %----4.17编 顺序后退法特征选择
- ( o: D3 h# F0 | y. a: y
- clear;
- clc;
- %--------特征导入 请自行修改
?# {/ D4 P: u. Z2 m- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
/ |' F, Q( h8 k7 F- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- 1 I7 O6 ]+ j: S: z2 l) g% K
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
3 N+ F0 B, o( u1 Z8 X/ T- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- 8 Q" f* M' P5 \ o
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
: @; h6 Y- y7 |! r: M" f. Q- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- 6 d5 \1 s# T2 _: `
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob B" b. {: _! n) S
9 Q" M; b4 [9 `# N0 x1 Y) @$ m5 j5 R8 a9 h
另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|