|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
这一题就是已知初始点,然后求某一点到三个圆的距离的和的最小值。使用的就是大名鼎鼎的Gauss-Newton方法。这里要求雅克比行列式,由函数 jacobian可以求出。所以这就减少了许多不必要的麻烦。
3 R) r8 W9 k% o0 a4 i4 z- ~0 w3 Y, G6 e/ ^
代码如下:
6 m c# F0 U8 a* \6 R+ V4 {
2 c' c$ M: `/ ]* j+ I4 {
9 h7 X" S" P- a- j$ D) u5 w6 w. I
% using Gauss-Newton method0 c( j# Y0 C- e$ s# J$ O- E
* {7 w; O5 q0 s e0 P9 k# D& c
- 7 Q- {3 y ~7 C
) O- W: A0 m m/ ^9 m3 E5 V2 _
% initial point(0,0)
, F: g% H B7 o4 h
0 ]: m& Y$ y7 w6 h; j' \
2 g1 V5 C& n) M% N$ m0 Q8 b5 d
. d$ k+ t* r3 K. _+ R3 T N7 P% 1、with circul point (0,1),(1,1),(0,-1)2 ]1 b! D# ]& x8 t1 [: b% P8 j
1 x! }3 O* N3 @4 P! C+ j
- & i r P6 |- m6 v. R+ v3 I
0 A# {# A( U" T" O% 2、with circul point (-1,0),(1,1),(1,-1). E$ C/ t+ q" O* W
6 b( x# p3 l% A8 H* i& ?1 N
) w4 e1 }; e5 N, b+ a
+ P+ [6 m% v, E3 Q% its radius is 1
a. h1 g4 H3 v5 S# ` Y. s( G N6 z7 i0 z4 i9 W
h; U/ S& e9 l$ E
/ S( }0 c' R/ A+ ]5 ]/ c. H4 e% output :the sum of distance is the minist# Q3 z! Q7 @# K: Z4 f1 q
: U% p- n9 N4 p; E6 W6 _
- , ?0 p+ C- Y: ^- [/ t: H# g
. L& Q3 r, d1 `& H7 d2 A/ nfunction page_237_1
: D9 f3 w5 \8 b5 @$ U7 _6 ?. h: N& a1 Q9 i- m. m+ k) y7 U2 @
- 5 ]- y# Y, V& `. ]7 b
8 }, m5 w4 ` Q/ Tformat long+ K4 B& R n! v3 l- m# `2 z
1 k$ c' y- c2 Z2 l2 F% m: Q
1 y6 T* y; A4 q) K) J" l. A
+ a- Y- n% Z+ \7 a* Fsyms x y
/ S! u" E9 Z/ E ]. ?. Q; R" B' ]$ {& T( C* h7 u* B/ `9 {+ R% H0 e
' V& ~* i( J2 u: q! Y# @
' H; [, i* h* b& u3 C5 Y9 Rr1 = sqrt(x^2+(y-1)^2) - 1;& O: p, |# R% f8 L$ K& |5 F
% k, p5 T! k' c+ O7 @% d: t3 c
- / \/ q( l( J6 d# k. C' ?- E
, J% G4 @$ O1 I3 I7 |/ xr2 = sqrt((x-1)^2+(y-1)^2) - 1;
; e- ?/ g+ h# f& n& A* ]: N
8 d" P' Z6 m: E# V - ' A( i9 i/ I( {
9 C* D) k" X( j K. P Y8 s( a, Ar3 = sqrt(x^2+(y+1)^2) - 1;9 v: s& _4 ~( P3 {: l$ ?2 s
! e$ Q3 [- [& ?, {9 ^ - / ~2 p5 A( Q# B0 |8 [7 m
' Z( y2 G; H% N, g3 p% orxk = [r1;r2;r3];
1 U, t1 f, ~! A K: Z( y
; Y" O: A" j& ` \0 m2 A9 U - . @; w# ?) t+ e3 Y l
4 b9 F3 w/ _ ?5 a, |; U6 c
Drx = jacobian([r1;r2;r3]);
2 h' D0 r6 i9 G3 o8 {7 j
' D& T: b/ Q0 `& C( L9 ?
( z8 X5 \ B+ `
, M) i9 v( I$ q; ]6 l- @DrxT = Drx';! G$ O: d# y/ j" { W; A3 A
+ S( N# a7 L( {2 l1 q$ g# e d" y- ) V, x$ t% I8 k# T( x
* J: c3 M7 X1 l0 A n/ ~DrxTdrx = DrxT*Drx; %Dr(xk)TDr(xk)! A) ]" y& h F# N2 {. k
! E: h- o+ J1 m: W+ \
1 v$ l* W9 _% l+ b' g3 I& d- }' I1 w/ h+ `' Y! ^: G& a
DrxTrxk = -1*DrxT*rxk; %Dr(xk)Tr(xk); y. w% { P4 A# x( K+ I- i) X' M
8 U8 A$ h/ v6 ~" [) ^9 y1 W5 r
* D( q) |1 b; j9 ^) q ^, T# ~" ^7 A+ l+ V
%vk = DrxTrxk\DrxTdrx; @2 _$ G% D4 t8 `6 r% W, v& E
8 w8 R: b( }, h( J2 ~5 T- ' L9 H9 }0 v3 \
8 p! R& c7 p: U# {* K" d" q3 WDrxTdrx_= subs(DrxTdrx,{x,y},{0,0});
, P. F: v- D8 ?+ R
, q6 w4 P3 J6 o" E5 y5 H2 b - " N% b" G( S$ m: f% n
/ ~# g# j6 ~& I6 a( xDrxTrxk_= subs(DrxTrxk,{x,y},{0,0});1 `9 I) J" M) a" T! _: }- i
. T1 v' E: @1 k! d3 b- P7 K1 e
! i% P: R. z( {2 [( U; a
) `* \% ]( ?! V6 X9 z3 z ~xy = zeros(2,1);
' b0 ~# ^8 G0 w. h- G( W' x0 K' w, _ T% Z j
7 I6 g" `% Z9 _7 q6 X$ h8 O" g' C ~) e0 k4 b/ E U
for k = 1:157 n9 V* y8 N# Y: q- |( b
6 U$ g1 \5 \8 @0 u- u7 Y
- / _* R' Q4 |; W$ J6 H
! H ?+ |+ B* D! R0 | v = DrxTdrx_\DrxTrxk_;
~3 e( j7 R [
) }3 ^( D, z: x" @# a* b - 8 Y: V& T! d6 L1 S
}" t2 I4 u! t( j' P9 j, x
xy = xy+v;
* D/ J) ]1 |# ]6 a) m3 x& G- B' f# C& N. Z3 w# U. s, I, g3 A: |
- 3 o2 ?! p7 x$ C) a1 ^
, U* B! v0 k% S1 ]0 _
DrxTdrx_= subs(DrxTdrx,{x,y},{xy(1),xy(2)});
X7 X* ?2 p2 H0 z
" t. I; P; Y* H - * K# R! H' e, U# ~( Q
2 I! g$ Q" M2 _" {; t9 o5 p1 o DrxTrxk_= subs(DrxTrxk,{x,y},{xy(1),xy(2)});
# Z6 G. W! m7 Y7 M% K& E
4 y6 @& \6 h+ | K" J - , \ \) h* D, q+ b8 H- g+ D
, M. g. `! ~) N) v3 b3 Iend" v2 ~' ?) U- S' i6 r, f4 B
, X1 G* `7 p4 l) H, W3 v
' m: N7 s2 ?# X" d% }2 y& z2 V8 f/ d# n4 H% H0 k$ {8 O- k5 U
disp('a with circular initial vector(0,0),Centers(0,1), (1,1), (0,?1)and all radii 1,the point is');
9 F( H9 g) i; j/ V4 ?8 R" b8 z0 K
- ! z* N6 Q* K' ~+ H( r; w: e
5 v( A) }' W1 U
vpa(xy,6)1 Y: h; }# u6 I1 [" @
& N- F- C2 F" k
- - @6 L$ J, Q' J R' @ @7 N
# L! H5 h7 |: s" R1 E/ z
6 |- ]6 \3 ]$ S. s& c v$ e# }
|
|