|  | 
 
| 
代码如下;
x
EDA365欢迎您登录!您需要 登录 才可以下载或查看,没有帐号?注册  6 Q/ i7 w4 j# A. \& s) L6 Q4 _function Kinetics4
 $ ~; L. g8 r( P1 pclear all
 3 v! J, _$ t2 s3 {4 Cclc
 / y$ Z, K8 ~& z% D) Ck0 = [2.159*10^8 4.734*10^6 174686 149892 0.99 0.7 0.5 0.78];%参数初值,其实是不知道的  8 ?; U% A) w# U
 lb = [-inf -inf -inf -inf -inf -inf -inf -inf];                   % 参数下限
 * t& B5 H$ J* z7 Oub = [inf inf inf inf inf inf inf inf];    % 参数上限
 & A& w2 [+ C0 I; q% s" t+ gu0 = [0,0]; %y初值  w4 r$ s: F8 H& \; N
 a=[0;0.06680583;0.192617534;0.301693824;0.419783943;0.527041818;0.598345407;0.65055108;0.6876854;0;0.0295189820000000;0.0760025420000000;0.143652564000000;0.303435528000000;0.419715167000000;0.525496977000000;0.565069320000000;0.743536298000000;0;0.0411725930000000;0.0608472370000000;0.0986899250000000;0.241132264000000;0.324760943000000;0.466871464000000;0.531688237000000;0.683614442000000];! R% @" o% ?9 S7 |7 O' V
 b=[0;0.2378;0.3288;0.3556;0.39;0.3877;0.3766;0.3580;0.3384;0;0.1373;0.2123;0.2755;0.3561;0.3549;0.3475;0.3486;0.2518;0;0.115879961000000;0.178182567000000;0.219982937000000;0.315058656000000;0.339244190000000;0.348664305000000;0.351963292000000;0.313743618000000];
 * U5 s  M2 e9 Y: U0 U! }yexp=[a,b];* z, P" M& ]. n& a% ~
 % 使用函数lsqnonlin()进行参数估计. E! \8 |, q4 v5 R
 
 ; V* D+ z1 z$ ^, S$ t) A[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...4 e8 J" Y) [3 @$ z+ ?/ k: U7 k
 lsqnonlin(@ObjFunc4LNL,k0,lb,ub,[],u0,yexp);      / h% K- _7 m/ ~! I5 ~
 ci = nlparci(k,residual,jacobian);
 @- B) K+ ]; b' n- Y+ l% E7 I; Yfprintf('\tk1 = %.4f ± %.4f\n',k(1),ci(1,2)-k(1))" L, H5 S2 k: ]. I+ I
 fprintf('\tk2 = %.4f ± %.4f\n',k(2),ci(2,2)-k(2))
 5 Y5 w: t+ |  ?3 }fprintf('\tk3 = %.4f ± %.4f\n',k(3),ci(3,2)-k(3))  $ _) f( N3 y' w$ n' _. w9 @
 fprintf('\tk4 = %.4f ± %.4f\n',k(4),ci(4,2)-k(4))" L9 _  L6 ], S0 L* S
 fprintf('\tk5 = %.4f ± %.4f\n',k(5),ci(5,2)-k(5))1 q8 o  d9 H# S
 fprintf('\tk6 = %.4f ± %.4f\n',k(6),ci(6,2)-k(6))
 / Z* f8 K6 U9 L/ [% Q2 Pfprintf('\tk7 = %.4f ± %.4f\n',k(7),ci(7,2)-k(7))
 / x. s' {) a4 x  U) E4 [/ o7 Z' ?7 Pfprintf('\tk8 = %.4f ± %.4f\n',k(8),ci(8,2)-k(8))
 ' b9 R$ H! D: m! T2 `; Wfprintf('  The sum of the squares is: %.1e\n\n',resnorm)
 5 G$ }+ L9 j2 [8 R. _) Cfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
 8 W2 v+ Z( D8 |1 Y# ^%目标函数
 % A/ i2 p2 Z, W# _9 R3 ^: jfunction f =ObjFunc4LNL(k,u0,yexp)
 ; i6 k6 ^2 W) _2 F5 ^. R+ dglobal theta Pt Ac R T Fa01 _1 h- `3 }6 H( O; l* c8 V" _! A/ P
 theta=zeros(5,1);4 f* f$ D0 R) J; ?& c9 [/ N6 c" Q& e& Q
 r0= 1.24*10^-3; % Outer diameter  of the membrane, [m]* D# z$ I5 {) X& C0 b
 ri= 9.4*10^-4;% Inner diameter  of the membrane, [m]3 ]- m' x" I- ~4 q6 ~: b- j
 r=(r0-ri)/log(r0/ri);% equivalent diameter ,[m]
 3 \5 [( @+ N: S9 l2 CPi=3.14159;4 e* U7 [3 |7 `! B* m  O
 L=0.05;% membrane length,[m]
 5 z" C% Q2 G. g" d. ]" t$ l; j: k5 V7 GAc=Pi*r*L;% membrane area [m^2]& V, h4 }) |7 J. T
 R=8.314; % [J/K.mol]
 ; r. U! Q* @( Z( f- f. \3 f! |Pt=101.325;4 c* _) P. G" H; ~
 Ftot=[2.678*10^-2;2.678*10^-2*1.5;2.678*10^-2*2];
 & M2 K+ Z3 ^! _- R1 @Kmax=length(Ftot);, @( @1 N( s% _' S% m
 9 \5 R0 e" e( ~# H# m- G
 T0=600+273;% Inlet temperature [K]
 , I9 `. ^* O4 g) [nmax=9;
 - c4 j8 \& O2 i( ?, i2 F8 YX1=zeros(nmax,Kmax);X2=zeros(nmax,Kmax);
 $ g& R' |9 @. _9 F! m; O* vfor K=1:Kmax
 ; L! L% u. q6 b: vFa0=Ftot(K); % If Pt is the parameter/Matrix
 " K; r0 y: N6 E  P%Pt=Pt0+(k-1)*1; % If Pt is an axis! X& g5 U" W! z8 K. n# a$ |/ D1 t
 %L=Lsize(k); % If L is the parameter/Matrix# Y6 s% \& a* [
 %theta(2)=H2Oratio+(k-1)*1; % If m is the parameter/Matrix1 e, q% ^# I! y2 m7 R, B3 o; |
 theta(2)=3; % F0(H2O)/F0(CH4)
 ; f7 O3 ]" d. Z! i6 d1 stheta(3)=0; % F0(CO)/F0(CH4)6 `8 G' e2 ?$ F
 theta(4)=0; % F0(CO2)/F0(CH4)
 ! }" b) o: ]1 m: t4 f  Z% `2 ntheta(5)=0; % F0(H2)/F0(CH4)! @: i4 O+ U; J, N
 for n=1:nmax
 0 {  f8 i% c" M%delta=delta0+(n-1)*1e-6; % If delta is the parameter/Matrix
 & @4 x& v* v# S2 H+ o7 E  N%rit=r0+delta; % inner tube radius [m]$ a7 `- N: \. Q+ ^4 N5 S: H, ?; Z
 %sweep=s0+(n-1); % If sweep is the parameter/Matrix
 0 }. z+ R+ K* L# G3 n6 J3 B%T=T0; % If T is a constant
 , z3 S6 }9 o' x! m/ B8 Z  |2 ?# i0 NT=T0+(n-1)*50;' j  l' ]1 h6 C1 O
 ksispan=(0:0.1:1); % precision
 # `, T5 z, i: u. S* D[ksi,S1]=ode23s(@KineticEqs,ksispan,u0,[],k); % PBR reactor
 " {$ \( z( {4 x9 w- sX1(n,Kmax)=real(S1(end,1)); % methane finale conversion% s1 W* b, m; [0 a- \
 X2(n,Kmax)=real(S1(end,2)); % carbon dioxide finale conversion' d" D0 ^$ c& A8 b& Y
 end0 b, |4 X$ p4 T
 end2 s4 }& o. y; y0 r; W8 R' p0 X
 f1=X1(n,Kmax)-yexp(:,1);8 k0 |0 ]6 S' O" ~+ R5 Z
 f2=X2(n,Kmax)-yexp(:,2);) r0 o6 V8 H7 o. V) U
 f=[f1;f2];
 6 W! m+ t' Y: `9 g( t%T0=T0-273.15;T=T-273.15; % Temperature expressed in Celsius
 % _$ R* \4 C* h1 J/ {$ P%Tspan=(T0:1:T);" V  o: ^  X& X( K1 a
 %Pspan=(Pt0:1
  t);# \4 ?. W; I8 {) g# ?& t/ a% C %DSPan=(delta0*1e6:1:delta*1e6);
 % a8 ]* I7 ~7 y: O% S( }%Sspan=(s0:1:sweep);, p8 K  [$ O2 I- A' a
 %D(:,
  =X3(:,  -X1(:,  ; % Delta = XCH4(MR) - XCH4(PBR)) L& f) L8 C& J  S  u" x 
 + N+ c) ]6 e: F% tfunction diff=KineticEqs(ksi,u,k)
 5 T# u$ B' j/ R: [* Y- w! qglobal theta  Pt  Ac Fa0 T R3 J7 \0 u6 a) A0 `. t, D
 S=Pt/(1+theta(2)+theta(3)+theta(4)+theta(5)+2*(u(1)+u(2)));: o8 A3 p" o# ^6 @
 P(1)=(1-u(1)-u(2))*S;
 ! x2 {' p- ]% J  a; E0 \P(2)=(theta(2)-u(1)-2*u(2))*S;
 - n2 O( d5 @9 J$ G( ~P(3)=(theta(3)+u(1))*S;
 ; |6 q7 \* z  o3 B8 uP(4)=(theta(4)+u(2))*S;
 # O# }- V) n, {: x( X- _( ZP(5)=(theta(5)+3*(u(1)+u(2))+u(2))*S;9 Z, D5 F2 ]) X# U# O5 t0 H
 % Differential System6 B& ?' a4 o3 D% D" w! f9 Z
 diff1=Ac/Fa0*k(1)*exp(-k(3)/R/T)*P(1)^k(5)*P(2)^k(7);
 4 d" v2 z+ K! ]9 Odiff2=Ac/Fa0*k(2)*exp(-k(4)/R/T)*P(1)^k(6)*P(2)^k(8);7 k9 u; A2 |% w; P9 ~1 ^" v
 diff=[diff1 diff2]';
 + b! e( [3 E* C7 ~$ [6 c1 p+ f
 , K( }+ ]2 f2 o+ J运行结果:, o7 [. o# D# x" p
 In nlparci (line 104)" [6 D+ F9 C( g1 g
 In Kinetics4 (line 15)) U7 J( }& [8 J3 @
 警告: 矩阵为奇异工作精度。
 , O0 \3 S- d; d9 a. }- w4 i: y8 s        k1 = 215900000.0000 ± NaN
 / g4 J, j" Y- k: b) ]% N        k2 = 4734000.0000 ± NaN
 $ k  O7 O5 d2 a5 [- W: e+ t1 b5 B        k3 = 174686.0000 ± NaN
 3 K& A+ [  o4 q8 z. P# I! r# t! V        k4 = 149892.0000 ± NaN4 Q. K; j0 v1 Z9 r2 K# L
 k5 = 1.2381 ± NaN
 9 F  I" e% E# k7 |0 a        k6 = 0.5426 ± NaN* _- e; U( o* s
 k7 = -0.3426 ± NaN
 , `. W! _- g% ~5 m; |4 R5 k, t5 f        k8 = 0.4455 ± NaN
 " D; p- r, i1 p: s+ I' g  The sum of the squares is: 2.0e+00% q( I, z0 Z$ b3 ~5 [- V6 A/ q; b
 
 | 
 |