|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
摘要:社交网络推荐中,通常未依据用户兴趣变化进行用户角色动态标注,会造成推荐预测误差,并且用户评分数据稀疏造成评分预测不准确.根据以上问题,本文提出一种基于动态角色标识和张量分解的推存模型.自无,升对用户角色无差别标识问题,引入信息嫡指标度量用户兴趣多样性,对目标用户进行角色定量标识.其次,考虑到用户兴趣漂移现象,提出基于时间窗的动态角色标识方式,解决静态角色标识产生的个体评分数据无偏好差异问题,实现用户评分数据层次化处理.最后,为提高评分预测准确率,通过引入张量分解在数据维度转换和数据压缩的特性,构建基于“用户-项目-角色"张量分解的评分预测模型.同时,在张量分解的过程中,通过对数据缺失值处理,提高评分预测精度,生成目标用户推荐列表.实验表明,该方法缓解了用户无角色差异形成的预测误差问题,并能够有效改善评分数据稀疏情况下传统方法推荐精度不足的问题,提高推荐效率.
, I$ B; M' m O4 X6 A5 ]" @$ e3 f
! @, W+ `2 I$ O8 T/ X9 I7 L关键词:推荐系统;动态角色标识;张量分解;社交网络;兴趣漂移;稀疏性- s1 T" a7 Z4 |
: K3 J! A, b- q: { 随着互联网技术的迅速发展和信息规模的急剧增长,大量冗余信息干扰了用户对有用信息的选择,如何向用户提供个性化、高质量的推荐服务成为了研究的重点.对主流的协同过滤方法进行改进,准确的发现用户兴趣和兴趣的转移是个性化推荐的基础,并且缓解数据稀疏对评分预测带来的精度不足问题也是研究的关键.
& Z, q( l9 @% H# m6 @: x ~; ]3 v
6 X7 P3 i$ z; Y' i* g3 |1 S) C% ~3 |! A8 J+ g4 E) E
# L6 v: p A$ G; B' Q
: D2 v! K+ ~/ ]$ b! Z3 |1 F# Q8 L% u) h, V' r0 G; h
! b' a! m2 F. u- B
|
|