TA的每日心情 | 衰 2019-11-19 15:32 |
|---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
留一法交叉验证(LOOCV)6 e8 R* Z+ S; S5 W" ]
留一法即Leave-One-Out Cross Validation。这种方法比较简单易懂,就是把一个大的数据集分为k个小数据集,其中k-1个作为训练集,剩下的一个作为测试集,然后选择下一个作为测试集,剩下的k-1个作为训练集,以此类推。其主要目的是为了防止过拟合,评估模型的泛化能力。计算时间较长。
8 ?* h; e- N" i( C1 K1 o& U* D; i; ~: s
适用场景:3 W: w( P' \- l- d" T2 u" y
* f# i0 p# i+ x/ X数据集少,如果像正常一样划分训练集和验证集进行训练,那么可以用于训练的数据本来就少,还被划分出去一部分,这样可以用来训练的数据就更少了。loocv可以充分的利用数据。8 Y% N) V, W1 [; V: B. ?
9 ~) n% |$ M5 r6 T- S
8 F: L% I* j+ c快速留一法KNN
" V- E/ {" e2 w# W' d0 x0 m. \0 G: M( ?
因为LOOCV需要划分N次,产生N批数据,所以在一轮训练中,要训练出N个模型,这样训练时间就大大增加。为了解决这样的问题,根据留一法的特性,我们可以提前计算出不同样本之间的距离(或者距离的中间值),存储起来。使用LOOCV时直接从索引中取出即可。下面的代码以特征选择为Demo,验证快速KNN留一法。7 J z) `* F C1 y; S
. l. Q# _" K c. \" S其中FSKNN1是普通KNN,FSKNN2是快速KNN. q" j- Q! z/ S6 W
; }2 S7 U, H( J# L* o- ~, N1 N主函数main.m
7 P: v& i( R6 X( `& c3 g5 o7 D: K% @, R
- clc
- [train_F,train_L,test_F,test_L] = divide_dlbcl();
- dim = size(train_F,2);
- individual = rand(1,dim);
- global choice
- choice = 0.5;
- global knnIndex
- [knnIndex] = preKNN(individual,train_F);
- for i = 1:100
- [error,fs] = FSKNN1(individual,train_F,train_L);
- [error2,fs2] = FSKNN2(individual,train_F,train_L);
- end
# B' B* |- s; C# j: N 3 D' ~3 W E) F
- I( j0 T7 M2 |* O8 _5 Y `数据集划分divide_dlbcl.m
6 h" B8 t( l. d) m9 c7 g( g* c4 p$ D5 e8 n2 D+ Q6 M8 P& s
- function [train_F,train_L,test_F,test_L] = divide_dlbcl()
- load DLBCL.mat;
- dataMat=ins;
- len=size(dataMat,1);
- %归一化
- maxV = max(dataMat);
- minV = min(dataMat);
- range = maxV-minV;
- newdataMat = (dataMat-repmat(minV,[len,1]))./(repmat(range,[len,1]));
- Indices = crossvalind('Kfold', length(lab), 10);
- site = find(Indices==1|Indices==2|Indices==3);
- test_F = newdataMat(site,:);
- test_L = lab(site);
- site2 = find(Indices~=1&Indices~=2&Indices~=3);
- train_F = newdataMat(site2,:);
- train_L =lab(site2);
- end
! O7 w3 {' J4 ~3 R, T1 o, D h
& f2 ~4 i! J- K! C$ _ p. [4 W: M+ l5 a/ |( n" {! q+ Y" @1 W
简单KNN
% r+ k5 E; f7 z9 I# G6 O. |) h
2 l2 u2 \, p7 |4 q6 h4 BFSKNN1.m
7 o. l) U& v, L0 d; @% b, E
, x3 ]: r/ g' V5 \3 _- function [error,fs] = FSKNN1(x,train_F,train_L)
- global choice
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- k=1;
- train_f=train_F(:,inmodel);
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- error=0;
- for j=1:train_length
- flag(j) = 0;
- CtrainF = train_f(flag,:);
- CtrainL = train_L(flag);
- CtestF = train_f(~flag,:);
- CtestL = train_L(~flag);
- classifyresult= KNN1(CtestF,CtrainF,CtrainL,k);
- if (CtestL~=classifyresult)
- error=error+1;
- end
- flag(j) = 1;
- end
- error=error/train_length;
- fs = sum(inmodel);
- end3 i$ j% t3 ]( c- f4 x
( H6 B' F0 D3 `: V
2 h: M/ l! y5 m1 E p
KNN1.m8 X$ N* N& A* a$ ^! E2 S; \* m
3 s" k" Z7 d! w* m! ?+ A- function relustLabel = KNN1(inx,data,labels,k)
- %%
- % inx 为 输入测试数据,data为样本数据,labels为样本标签 k值自定1~3
- %%
- [datarow , datacol] = size(data);
- diffMat = repmat(inx,[datarow,1]) - data ;
- distanceMat = sqrt(sum(diffMat.^2,2));
- [B , IX] = sort(distanceMat,'ascend');
- len = min(k,length(B));
- relustLabel = mode(labels(IX(1:len)));
- end
! C) K3 {7 w2 w: l! O 0 v/ S& B; X; z- P/ b4 t
3 b. U* Q% x( W快速KNN
# s8 d+ T2 M" m! ~, R, m# Q7 e$ t
7 P- w4 E- z4 w% u1 w/ T+ D$ b1 ^preKNN.m5 M) c; d( @( I$ Y' \
% x0 z& n, z" h: y2 q+ O4 _5 V2 P
- function [knnIndex] = preKNN(x,train_F)
- inmodel = x > 0;
- train_f=train_F(:,inmodel);
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- knnIndex = cell(train_length,1);
- for j=1:train_length
- flag(j) = 0;
- CtrainF = train_f(flag,:);
- CtestF = train_f(~flag,:);
- [datarow , ~] = size(CtrainF);
- diffMat = repmat(CtestF,[datarow,1]) - CtrainF ;
- diffMat = diffMat.^2;
- knnIndex{j,1} = diffMat;
- flag(j) = 1;
- end
- end! a6 y" O# Y7 m" v* G y! a9 l
+ o& P& S* k; j) X1 {4 Z- z* o
- T8 I! ]* P' EFSKNN2.m
( O* w3 T$ @' y( q9 g2 L) R+ t; u6 x. r4 f$ N. W: {
- function [error,fs] = FSKNN2(x,train_F,train_L)
- global choice
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- global knnIndex
- k=1;
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- error=0;
- for j=1:train_length
- flag(j) = 0;
- CtrainL = train_L(flag);
- CtestL = train_L(~flag);
- classifyresult= KNN2(CtrainL,k,knnIndex{j}(:,inmodel));
- if(CtestL~=classifyresult)
- error=error+1;
- end
- flag(j) = 1;
- end
- error=error/train_length;
- fs = sum(inmodel);
- end/ o9 {1 ]5 M! z: o4 |% V
8 ]3 }; L0 b6 {& v: u! H+ U1 _; W
/ I& z% Z0 D7 \$ yKNN2.m
3 L8 i/ A. b( E; p; K8 [6 ~) |% o
- function relustLabel = KNN2(labels,k,diffMat)
- distanceMat = sqrt(sum(diffMat,2));
- [B , IX] = sort(distanceMat,'ascend');
- len = min(k,length(B));
- relustLabel = mode(labels(IX(1:len)));
- end( q' O: l9 |0 s9 w
B) I$ n% n; |2 x2 U- A2 t! N- _: Q; K, E( {
结果0 G- Q0 V: ~- e0 S7 ^0 M2 w
2 `9 l2 Q- |4 J+ ~5 l1 A
$ S4 z+ {4 d0 J2 ?4 R6 D
) Q" K2 d& M1 ?+ G
可以看到FSKNN2+preKNN的时间比FSKNN1要少很多。
+ a3 Y5 P. ]5 U: o2 J7 e |
|