EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
SDRAM布线规则" }0 Z# c% j5 ^1 e8 p4 q8 e
SDRAM接口电路和PCB布线
5 G* N O) {1 q u& d' o M5 V
很多人对内存布线感到迷茫,找不到切入点,不知如何下手,其实高速硬件设计的主要任务就是与干扰做斗争,内存布线也不例外。可以这样考虑:内存是做什么用的呢?是用来存储数据的,写入1读出1,写入0读出0,即保证数据访问正确。那么,在什么情况会导致数据访问错误呢?
5 Y" M4 d6 A1 X% {# k6 k1 E9 s 1、判决错误,0判成1,1判成0。可能参考电平不准(为什么不准?信号线内阻造成的压降),也可能是加性干扰,或者阻抗不匹配引起信号畸变。2 W; |$ l- c' q0 A/ D. a
2、时序错误,不满足建立/保持时间,或者采样点相位错误,不在有效信号位置上。触发器需要维持一段时间的能量供给才能正常工作,这个时间就是建立/保持时间。- f. d/ h) k3 |. O6 G
那么只要解决好这两个问题,保证内存正确访问,你的内存电路就设计成功了。
( t- R8 ] x* O5 a# p+ g% K" @有了这个指导思想,内存布线就可以按部就班地完成。不过,不同的RAM类型,虽然目标都是避免判决和时序错误,但实现方法因工作模式不同而有较大差异。2 b9 L5 b3 v. `5 C8 w$ u
高速系统一般采用低压信号,电压低,摆幅小,容易提高速度,降低功耗,但这给布线带来了困难,因为低压信号功率受信号线内阻影响大,是电压平方关系,所以要尽量减少内阻,比如使用电平面,多打孔,缩短走线距离,高压传输在终点用电阻分压出较低电压的信号等。SDRAM、DDR-I、DDR-II、DDR-III信号电压一个比一个低,越来越不容易做稳定。
1 y" _0 I3 @% X4 \电源供给也要注意,如果能量供给不足,内存不会稳定工作。 下面先介绍一下时钟同步电路的类型,然后分析具体芯片的类型。
" y5 |# U( Z6 D( ]源同步就是指时钟选通信号clk伴随发送数据一起由驱动芯片发送。公共时钟同步是指在数据的传输过程中,总线上的驱动端和接收端共享同一个时钟源,在同一个时钟缓冲器(clock buffer)发出同相时钟的作用下,完成数据的发送和接收。
* \# ?% P: f o/ h* Q公共时钟同步,将同一个时钟信号用时钟分配器分成2路,一路接发送器,一路接接收器。在时钟上升沿发送数据,在下一个周期的上升沿采样接收。速率在200-300MHZ以下。3 O2 Y2 B+ }3 u1 q( L l( I. H
源同步是时钟和数据一起发送,时钟稍稍滞后发送,传输速率主要由数据和时钟信号间的时差决定。因此速率快。* P5 f) m5 G+ C7 H3 o' C8 w
公共时钟同步电路走线长度有最大值len <=,源同步电路走线长度有最小值<= len <=
# O$ u1 {& m& i2 J2 u, Q4 ]: M
5 O7 C8 l7 |) ~+ f3 w 经常看到“等长布线”,其实,等长不是目的,真正的目的是满足建立保持时间,同频同相,采样正确。等长只不过可以最简单地实现这个目的罢了。要定量分析线长,必须按照时钟模型公式计算。时钟同步电路的类型在后面有简单介绍,这里只要知道SDRAM是公共时钟同步,DDR是源同步就可以了。
: a' z& O& M- j/ t+ Y6 F
, n9 l0 }: Q3 r7 ?" l% w SDRAM是公共时钟同步模式,只关心建立时间,不关心保持时间。这些时间和各段飞行时间,经过各个门电路延时,clock skew,jitter,cycle等有关,需要按照公式精确计算。算出各种参数后下规则,让EDA软件辅助设计。选出最长的一根线,不需要计算什么,只要与之等长即可。有些软件能自己算,有些只能自己一段段计算,可以编程让EXCEL表格对某种格式的报告文件自动求和,也算半自动化了。
% C3 ^9 ^6 X, D$ @$ N( M+ l- D4 K- k: [/ \2 g# d4 r# b7 c, Z8 C
DDR的所有信号都要加匹配,不论多复杂,为了稳定性。始端匹配串接一个22/33欧电阻即可,终端匹配分为AC匹配和DC匹配,阻容可以对噪点抑制,戴维宁电路可以提供高压输电,使参考电平更准确,虽然直流功耗大,但比单个50欧功耗小。
9 W! B/ a, M7 T0 i: T+ q; S CPU和DDR都是高速器件,DDR热量高,应远离。而且DDR是源同步时钟模式,对保持时间有要求,不是线越短越好,有最小距离要求。保证时钟稳定,同频同相,冗余大即可。
& D9 B8 ?2 y: g4 [6 Z有时,信号线有交叉的情况,此时,可以在PCB里调线,再反标回去,因为RAM的各个数据线不需要一一对应,只要有地方存储bit就可以了。注意:刷新线A10不能调,需要读取RAM ID时也不能调整。
8 V# y4 B% ?( x, p7 G; c( k2 P+ y评价设计的好坏要看Margin(冗余),setup time margin和hold time margin,SDRAM/DDR工作没问题并不意味着margin小,也许在实验室可以正常工作,可一到现场就死机。频率漂移,时钟抖动,相差,介电常数变化等都会导致采样错误/不满足建立保持时间,而margin大就可以尽量抵抗这些干扰,在一个恶劣的环境里仍然保持稳定。) @% C& L8 X3 Z& i; R
( m2 u. J# Q' U5 r% |) b 2410使用64M字节的SDRAM扩展数据存储区,由两片K4S561632组成工作在32位模式下,最高频率可达100M以上,对于SDRAM的数据线、时钟线、片选及其它控制信号需要进行线长匹配,由此提出以下布线要求: 1. SDRAM时钟信号:时钟信号频率较高,为避免传输线效应,按照工作频率达到或超过75MHz时布线长度应在1000mil以内的原则及为避免与相邻信号产生串扰,走线长度不超过1000mil,线宽10mil,内部间距5mil,外部间距30mil,要求差分布线,精确匹配差分对走线,误差允许在20mil以内。 2.
- m# C1 s0 C3 u地址、片选及其它控制信号:线宽5mil,外部间距12mil,内部间距10mil,尽量走成菊花链拓补,可有效控制高次谐波干扰,可比时钟线长,但不能短。 3. SDRAM数据线:线宽5mil,内部间距5mil,外部间距8mil,尽量在同一层布线,数据线与时钟线的线长差控制在50mil内。) s" B. z0 C; X
4.在重要的控制信号线上一搬串联33的电阻,消除干扰。 嵌入式系统使用64M字节的SDRAM扩展数据存储区,由两片K4S561632组成工作在32位模式下。最高频率可达100M以上,对于SDRAM的数据线、时钟线、片选及其它控制信号需要进行线长匹配,由此提出以下布线要求:
' A1 Y4 ^$ `) |* M. m1 V - SDRAM时钟信号:时钟信号频率较高,为避免传输线效应,按照工作频率达到或超过75MHz时布线长度应在1000mil以内的原则及为避免与相邻信号产生串扰。走线长度不超过1000mil,线宽10mil,内部间距5mil,外部间距30mil,要求差分布线,精确匹配差分对走线。误差允许在20mil以内。; g( n& i& o4 M" u L* m
因为表层介电常数低,适合布高速信号,但是因为一侧是空气,存在电磁辐射,屏蔽效果差,因此不能布电磁辐射强的信号,如时钟信号。 - 地址,片选及其它控制信号:线宽5mil,外部间距12mil,内部间距10mil。尽量走成菊花链拓补。可有效控制高次谐波干扰,可比时钟线长,但不能短。
% q$ `! L7 J8 J - SDRAM数据线:线宽5mil,内部间距5mil,外部间距8mil,尽量在同一层布线,数据线与时钟线的线长差控制在50mil内。(SDRAM布线中,SDCLK与DATA的长度相差<=800mil)
9 q' w M! J( T: |0 Y, S 根据布线要求,在allegro中设置不同的约束:针对线宽设置3 个约束SDRAM_CLK,SDRAM_ADDDR,SDRAM_DATA,设置完约束后将约束添加到对应的net上。使得各个net都具有线宽、线距约束属性。最后为不同的信号组选择合适的约束即可。但是设置的约束在系统CPU内部是无法达到的。因为EP9315为BGA封装。pin间距1.27毫米,显然在CPU内部,线宽线距无法达到上述要求,利用Allegro设置CPU特殊走线区域cpu_area。并加上area属性,在此区域中另设置适合BGA内部走线的约束。
& m x2 D" {, w( E7 s7 I
下面简单说下内外层布线的特点:8 m8 s$ d Q/ W9 r' T9 J* Z
6 i$ ?. P) M( W: k0 G# X- y% b, M1 J2 `9 q; n3 o
^' S! H(1)表层(TOP和BOTTOM层)布线) , J+ X/ ^8 }8 ^3 Q \8 c
: o# m) k2 e8 Q0 {# |
3 m8 M% j) X# n- e/ y) \/ @
* X1 D6 Y& @6 ?# g% j6 ` Z+ ~& o4 t3 ~! m' P1 k
分析一下表层布线的环境,线的一侧是介质,一侧是空气(忽略阻焊油漆),等效介电常数小于中间层,传输线延时较小,这个特点决定了表层走线可以有更快的信号传输速度,因此可以利用表层布信号速度很快的信号,如2.5GHz或3.125GHz,布高速信号时尽量不要打孔,如果实在需要打孔,从TOP打孔换层到BOTTOM,或者从BOTTOM打孔换层到TOP,也不存在过孔的stub效应,这个特点也是内层布线所不具备的优势。但表层布线不是完美无缺的,由于走线一侧是空气,所以存在电磁辐射效应,因此不能布时钟等强辐射信号。(2)内层布线 5 V6 d( I! h7 x' I2 x% a
: Z- J' D: d' \" m8 P3 K ' M/ _. p( w& F: [# h
内层布线的优势是可以很好的利用参考平面实现屏蔽效果,可以很好地控制阻抗,由于内层没有表层的SMD器件焊盘,所以布线空间比表层更大,布线特别是布总线更容易。但内层布线由于两侧都是介质,等效介电常数比表层更大,所以传输延时较大,另外内层布线时换层会存在过孔stub效应,过孔stub一来会加大传输线延时,另外一方面会使传输线阻抗不够连续。
1 ^ s- i: M7 l' j& ]
) U5 e1 w7 F. V2 O6 R# v G1 Y8 C - A# i& ~2 W# Y! r
在现实环境中,由于内层有更大的布线空间,尽管存在延时较大等不足,我们还是倾向于把更多的线布在内层,至少在1GHz以下是不会有太大影响的。
SDRAM,133MHz的应该没有什么大关系的,不过还是要做一下的。 差分时钟控制在+-50mil以下,严格的差分走线; 控制信以及地址线要和时钟线等长,线长不超过+-100mil. 至于数据线,没有必要和时钟线,地址线以及控制线等长。 每8个bit也就是一个Byte及其对应的DQS,DQM为一组。以32位DDR2为例:其实一共可以分为五个组来控制走线长度:第一组:时钟以及控制线,地址线,所有的走线等长,误差在+-100mil之间,时钟要求更高,该组走线长度不宜短于数据线长度。第二组:Byte0(D0-D7)以及DQS0,DQM0为一组,要求等长,误差在+-100mil之间,可适当放宽。第三组:Byte1 (D8-D15)以及DQS1,DQM1为一组,要求等长,误差在+-100mil之间,可适当放宽。_ 第四组:Byte2(D16-D23)以及DQS2,DQM2为一组,要求等长,误差在+-100mil之间,可适当放宽。第五组:Byte3(D24-D32)以及DQS3,DQM3为一组,要求等长,误差在+-100mil之间,可适当放宽: w! \* a( R" L3 h+ [ o
如果用Allegro来做的话,可以很方便的利用Net,Xnet等办法来设置等长。8 Y8 q' G5 f/ |0 n# B. k6 S. E) \
|