|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design# E9 }4 K8 p1 ~
Overview0 K Z3 r* S3 w' G; S4 ]
System Theory( y. e' ?6 p( R' y. H; [/ V3 C
Effects of Nonlinearities
& r* d7 M7 f# @" s8 bGain Compression( Z0 f$ |8 Q" L% |+ N; p% v
Desensitization and Blocking
$ u7 n8 y. @8 b q# c# S3 SCroSSModulation
" Z$ \4 u4 s g# ^, H% D O5 ~0 |Intermodulation. W" Q+ y0 R& {% w7 t
Adjacent Channel Power Rejection
( u' f7 Y% _5 n. y& P9 F6 C- ^Random Signals. \$ k4 s5 Z5 F v+ l1 r1 O0 }9 B3 v
Noise and Noise Figure
' B0 p; s$ w% LInput Referred Noise: g9 A$ i4 e) ?/ A& Y
Noise Figure of Lossy
: X) z" p f, _" h: E* i! |0 N* C
; t8 l3 G) K0 u# L ~ x0 {
9 C8 b# R- ?. Z1 t* \System Theory (1)/ o$ D& ?) O0 u; M: n: C: N( u
Linear Systems6 `, B9 V5 |0 p
1 1 x ® y 2 2 x ® y
+ [; s6 X1 A8 ^- E9 u1 2 1 2 ax + bx ®ay + by
$ {1 L" p ?' AIf inputs x1 and x2 generate outputs y1, y25 G1 a0 w1 q3 O% P
For a linear system output can be expressed as a linear combination of inputs1 L& R1 U. h' ]$ _; o) i+ R
for all values of the constants a and b
& b' I4 M5 ^8 V% a" _) VTime Invariant Systems7 t! {, J5 z0 _" a/ G1 [
For a time invariant system time shift in input results in the same time shift in output6 `1 R/ X# F- L8 o$ S$ w5 s
x(t )® y(t ) then x(t -t )® y(t -t )
9 e: t) I6 |1 u+ `% G) AAny system that does not satisfy this condition is nonlinear
& P: o9 @7 R! E( r5 E) y3 _Obs. A system is nonlinear if it has nonzero initial conditions8 r v( E. v' \/ }8 b: C% ?
for all values of t; d0 c/ {8 }7 i0 K
8 O7 H2 K/ C4 D& D+ y
" {4 p4 _' F% b! _: H
' v+ v- Z! @# }4 U" J) p |
|