|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design
7 w; S0 E. s' E+ yOverview
: f6 _: H! O4 E ~7 f5 USystem Theory
& O1 @' c( D! U) e0 J' a7 xEffects of Nonlinearities% J6 u& f G) U8 Z
Gain Compression
7 g6 x( `( F, p1 R; N; lDesensitization and Blocking, t; I: K6 G: D- T6 s
CroSSModulation
2 ?' W! Q% g* F0 A. ?- cIntermodulation
9 N& c6 X* D9 g. b4 M' w/ DAdjacent Channel Power Rejection5 E, d* O; j0 j2 Q+ ?
Random Signals M d$ I9 ^5 m
Noise and Noise Figure
; y9 j, P, [9 P. \6 {Input Referred Noise
6 T v b# a hNoise Figure of Lossy
0 O$ ^ s! O8 {0 d* |. ^1 R8 x
/ t2 `; v+ [7 z* ?3 U; o0 z! S% S2 p5 J- L( [/ ?
System Theory (1)
; j# f& j% C. X; RLinear Systems
0 _: s0 A: x, c5 f3 u8 C# S1 1 x ® y 2 2 x ® y
& W# x" ]# r; j" B% O$ D1 2 1 2 ax + bx ®ay + by
7 R0 `, H: `' W& T9 Z, XIf inputs x1 and x2 generate outputs y1, y2' i' x# ?. L, }$ \- E
For a linear system output can be expressed as a linear combination of inputs- f: c X+ `. d$ _
for all values of the constants a and b
6 X, n! n, b0 _5 c" ]4 NTime Invariant Systems
: W, k C* W- P( t- s3 UFor a time invariant system time shift in input results in the same time shift in output; k/ b1 V* Y3 N+ ~) @- t
x(t )® y(t ) then x(t -t )® y(t -t )
1 [7 X. [& \9 |( `4 f, xAny system that does not satisfy this condition is nonlinear4 x1 G7 K7 s; e8 t4 s1 e& C
Obs. A system is nonlinear if it has nonzero initial conditions
6 N; _0 I( l" @; D# z2 z# \( zfor all values of t
' Y C2 p1 X5 K/ N! @1 w
* }! s2 Q* C/ T4 Y8 q
# `4 o( D/ \0 x5 ^ I5 ^# A9 q: d8 B
|
|