EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 Heaven_1 于 2022-11-29 19:21 编辑
/ ^. c$ Y8 j* e" [" Q! a
& p- j: \, l, V. G* E! h场效应管MOSFET 通常被认为是一种晶体管,并用于模拟和数字电路。MOS管基础请移步:MOS场效应管基本知识。 下文介绍场效应管MOSFET的应用。 一、场效应管MOSFET用作开关 MOSFET很容易饱和,这就意味着说,MOSFET完全打开,且非常可靠,可以在饱和区域之间进行非常快速的切换,这就意味着MOSFET可以用作开关,尤其是适用于电机、灯等大功率应用。 在实际应用中,可以使用与大功率设备相同的电源来操作MOSFET,使用机械开关施加栅极电压。如下图所示,使用的是N沟道MOSFET。 或者也可以使用电子信号,例如微控制器激活MOSFET。 N沟道MOSFET
$ H/ L y* ~( R$ G' R
- w( C/ }% l$ V6 S# D如上,N沟道MOSFET开关电路图。 当按下按钮时,LED亮起。1kΩ 电阻充当下拉电阻,将栅极电压保持在与电池负极端子相同的电位,直到按下按钮。这会在栅极施加正电压,打开漏极和源极引脚之间的通道,并允许电流流过 LED。 P沟道MOSFET
9 f; k2 x% b& @3 ?- r
3 q2 H4 [' a+ z( r
如上,P沟道MOSFET开关电路图。 二、场效应管MOSFET用作电机驱动电路 N沟道MOSFET 如下图所示,两个二极管反向偏置放置在电机触点和MOSFET漏极/源极引脚上。
' `+ \9 v7 [" C& C4 Y9 m6 c. x, H0 O" t+ e# h. U
如上,N 沟道 MOSFET 电机驱动电路。 P沟道MOSFET
: K; D3 i6 k5 E! g
4 ]. ?/ P3 {# F如上,P沟道MOSFET电机驱动电路。 双向运行控制器 如果想要一个可以双向运行的电机控制器,就把上面两个电路结合起来,如下图所示。
, E/ o5 W2 d" Q) e# g) s: r7 f9 P
如上,双向电机驱动电路图。 三、场效应管MOSFET应用在逻辑门电路中 在这之前,先简单介绍一下逻辑门。 双输入与门(AND) 双输入与门(AND)是最容易理解的逻辑。如下图所示。
- d b7 t$ Q, R1 e! \3 p/ w# M4 c8 C2 A1 I$ ^
只有两个输入都为高时,与门(AND)的输出才会为高。如果任一输入为低电平,则输出也为低电平。 下图为与门逻辑真值表图。
2 ^* m5 S; u. Q* B4 ?
2 Y( P6 u" m3 Z4 w* S与非门(NAND) 下图为与非门(NAND)的真值表。
0 M: }0 c( U2 ], V
+ X$ D, P4 a! Y1 N9 `/ O: n逻辑门中的MOSFET 由于MOSFET很容易在低电压和几乎可以忽略不计的电流下饱和(完全导通),就可以用它构建上面的逻辑门,进而构建及其可靠的数字逻辑系统来处理数据。 非门(NOT) 如下图所示,PB1 将两个 MOSFET 栅极连接到 +6V,但只有 ZVN 会以正电压打开。但是,当它打开时,它将输出连接到 GND,因此 + 输入在输出处变为 GND。相反,当我们通过 PB2 将 GND 施加到输入时,只有 ZVP 打开,将输出连接到 +6V,再次反转信号。
4 W. X1 _- ]+ W0 z: X3 b# D
' @ N5 f( M [( K0 a3 s# q* ` @
如上,非门电路图。 与非门(NAND)内部是什么样? 与非门使用4个MOSFET,如下图所示。 只有当 SWA 和 SWB 都为高电平(逻辑 1)时,LED 才会关闭(逻辑 0)。
( G. u( ?. j* d2 m0 z) N& w2 ^. S' o! _
如上,与非门的电路图。 如果将上面两个图结合起来会发生上面?会不会是负负得正?如下图所示。
r3 t* S4 b8 X3 n) B6 c& a$ D' R* \9 \# x
如上,内部的与非门。 从上图中可以看出来,外部的与非门(NAND)是与门(AND)的否定,但内部的与门(AND)实际上是由一个与非门(NAND)和一个非门(NOT)组成。所以实际上的与门也就是非与非门。
1 A3 d3 {( |3 {5 a/ O, X
0 b3 i. f4 W. N- P8 S! {% T& ~8 }
或门(OR) 如下图所示,或门就是或非门(NOR)和非门(NOT)组成的。
+ B1 g: n, R6 w4 q+ Y
$ A) O, N- @+ Z0 }8 y/ a
异或门(XOR) 如下图所示,异或门也就是同或门(XNOR)和非门(NOT)组成。
) W) `1 I3 S* I9 Z
; b% h6 t7 z7 a8 S1 E# j: M8 m由上面几个可以证明,不管什么逻辑门,都可以用有限数量的与非门构成。 四、逻辑电路 这个电路相对来说很简单,不过需要大量的N沟道和P沟道MOSFET或者逻辑芯片。 在使用逻辑芯片的时候要注意以下几个点: 1)一定要避免任何 静电积聚或者放电,以免损坏芯片。 2)每个芯片都有一个用于 +V 的公共引脚和一个公共 GND 引脚,这个在原理图上很容易找到。 3)任何未使用的输入引脚都应连接到 GND 4)逻辑芯片并不是用于大负载(如电机等)的大电流驱动器。 下面将从一个简单的LED闪光灯开始。 LED闪光灯 使用两个或非门就可以构建一个振荡器。如下图所示。
8 ]0 }( g) R/ ~( G: W; H
! D. ~3 `. t/ Q J r如果想要两个来回闪烁的LED,则LED2和R2都是可以选择的。不然的话LED1将以R1和C1的值确定速率闪烁开/关。 设置/复位锁存器 设置/复位锁存器是时序逻辑的关键组件。 一组 8 个锁存器将形成一个 8 位存储单元的核心结构。在内存中,SR 锁存器称为 D 锁存器(数据),它与系统内核时钟一起用于确定何时进行锁存。具体如下图所示。
7 [: R: Q, s1 x
% Y- n4 v& {* b$ m4 q& @5 \1 z! s
上面这个电路更多的是概念演示,因为在实际应用上,通常锁存器只要一个输出就够了,当按下按钮时状态之间的输出触发器时,它们将始终处于彼此相反的状态。 当然也可以将此处的一个输出连接到第二个电路,并且将锁存器用作第二个电路的“推开”非机械开关。 两位输出的半加器 单个的异或门(XOR)可以用作1位二进制加法器,通常添加两个与非门(NAND),就可以做成一个带有两位输出的半加器。 先做一个或门(OR),如下图所示,由3个与非门(NAND)门组成。
; Y; r5 n* N, W5 @0 A1 i0 H
0 ~0 B8 U/ S" j# O1 Y! s) [在将或门(OR)更改为或非门(NOR),只需要在 U3 的输出和 LED 之间添加第四个与非门 NAND,并将 U4 的两个输入连接在一起就可以了。 再次使用与非门(NAND),可以构建一个同或门(XNOR)。
% y1 R) a4 }# x4 H. i3 x" J! |' Z3 h2 S+ w5 ?1 |# k
将 U5 移除并将 U4 的输出连接到 R3,就可以得到一个 XOR 门。 单个的异或门(XOR)可以用作1位二进制加法器,通常添加两个与非门(NAND),就可以做成一个带有两位输出的半加器。
6 k( f% \; V! G) b1 J5 E0 r# V6 n0 c+ D/ h- P& v4 T
全加器 全加器需要进行一些更改(添加一个异或门( XOR)、两个 与非门(NAND) 和一个 或门(OR)),其中添加一个输入来处理来自前一个加法器的进位信号。然后将几个加法器堆叠在一起,每个位一个加法器,以构建一个加法机。
- w$ W- |0 {3 T" h8 T' j* p
9 L. _: y) j; k6 h5 o6 T' OPB1 是位 A,PB2 是位 B,PB3 是前一个加法器块的进位位。如果我们只按PB1或PB2,我们是加1+0,只有LED 2会亮,表示值为1。如果我们同时按PB1和PB2,表示二进制加1+1,即二进制10 (表示为 10b)。这将点亮 LED1 并关闭 LED2。如果我们然后按 PB3 并再添加 1,我们得到 11b,两个 LED 都亮起。 4位加法器 右边的第一个块(带有 A0 和 B0)可以用半加器交换,而不影响输出。它只是删除了第一个全加器上的进位(Cin),无论如何,它在这里连接到 GND。
- H2 ~7 I8 R4 K$ ?9 W/ i4 y; w
1 i& l& _; s4 L$ P! J. D
在这个例子中,我们将两个 4 位数字 A 和 B 相加。每个 (A0 和 B0) 的第一位在右侧相加,结果发送到 S0,任何进位位 (C1) 发送到下一个加法器. 然后将 A1 和 B1 以及来自第一个加法器的 C1 相加,结果进入输出 S1,任何进位位都在 (C2) 上发送。最后一个加法器要么显示最后的进位位 (C4),如果有的话,或者如果没有空间或它不重要,则忽略它。 4位比较器数字锁 如前所述,异或门(XOR )可以用作加法器,但它们也是比较器,如果两个输入相同,则输出一个状态,如果两个输入不同,则输出反转状态。这使我们能够检查引脚的状态,并仅在正确时进行切换和输出。
4 \( B. V2 D* G3 p2 v2 s
9 b3 i- b% ]; I) ^* [+ I) |2 t
如上面所示,在日常生活中,我们经常会用到MOSFET,可以说,MOSFET是当今使用的最重要的电子元件。 如果看到最后的话,应该可以发现,在这个文章中并没有提到说MOSFET用在放大电路中。不是不可以用作放大电路,而是根据我的经验来看,模拟信号放大器任务最好由BJT处理,而快速、大电流开关最好用 MOSFET 。 其实这两种晶体管类型都有很多例子可以很好地双向工作。具体怎么使用,还是看大家的电路要求。 电子元器件采购,替代芯片查询,上道合顺大数据
. |4 \3 s9 _7 ^& ?. ?5 x; z |