EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
如题:FRFT程序运行时说Not enough input arguments. 是怎么回事???
0 O* Q- V0 t' ^' n! t- L% v h3 Z9 v$ g* M8 {
function Faf = frft(f, a)6 \9 K V; k. E. B
% The fast Fractional Fourier Transform
+ h9 L I; J, Z( p% input: f = samples of the signal3 m+ v" z. y$ j9 J* l" N
% a = fractional power6 S* P; o* z l! Y* {: O% h( X
% output: Faf = fast Fractional Fourier transform error(nargchk(2, 2, nargin)); f = f( ;0 @4 Y: ^8 D6 L1 e7 O3 e
N = length(f);
5 y& H6 b1 d. P# i8 Yshft = rem((0:N-1)+fix(N/2),N)+1;
* ^6 `! J; I% }" rsN = sqrt(N);1 B [, d, p3 b* S; k# [& I# |
a = mod(a,4); % do special cases
. R5 f3 \) W* Q" B, v6 e o% Pif (a==0), Faf = f; return; end;
0 Q3 R) Q' }4 r, o% C; b% [3 R' Tif (a==2), Faf = flipud(f); return; end;
) [- r' G- z6 H/ I9 t8 ?; Jif (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end - ?3 Y# l$ d2 |- D1 I" O+ c
if (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end % reduce to interval 0.5 < a < 1.5
. R$ ~. V4 h A. T+ k! uif (a>2.0), a = a-2; f = flipud(f); end9 a L+ G; P2 J
if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end5 z: N3 q" U2 A- g6 }$ E
if (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end % the general case for 0.5 < a < 1.5, T9 n, a. H# L H; j% m& R' K
alpha = a*pi/2;( ^( l: k8 y( Z; I1 r/ Y/ T
tana2 = tan(alpha/2);
# S4 J" J5 X9 m+ Isina = sin(alpha);
; b0 |2 Z3 ^$ Uf = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)]; % chirp premultiplication
, c+ [' k7 z* U3 Rchrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)'.^2);
, ^6 ?5 z; g3 \1 k, y3 m. B4 ]6 L& Yf = chrp.*f; % chirp convolution \; w& d, n, X
c = pi/N/sina/4;9 e4 U5 K% d1 n+ S X& s" p
Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)'.^2),f);
" o& x/ ]( g: r$ u2 Z' HFaf = Faf(4*N-3:8*N-7)*sqrt(c/pi); % chirp post multiplication
& F8 b7 |: _( ]0 \, R: N- zFaf = chrp.*Faf; % normalizing constant( M& A# ~1 N( k2 X1 S7 w3 d
Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1); %%%%%%%%%%%%%%%%%%%%%%%%%; }0 V7 [3 |, u) C: A. F! P
function xint=interp(x)
' D7 h5 z$ W' B1 v% sinc interpolation N = length(x);
; x/ X/ }: l2 \9 Gy = zeros(2*N-1,1);8 Z: V9 `: x( O; |- G
y(1:2:2*N-1) = x;
, Z3 c. f2 i0 @1 E7 ?( Axint = fconv(y(1:2*N-1), sinc([-(2*N-3) 2*N-3)]'/2));
1 V9 t. y/ A( y$ {5 c P0 d- U$ exint = xint(2*N-2:end-2*N+3); %%%%%%%%%%%%%%%%%%%%%%%%%
. y- ~9 Q6 \- y! l1 I1 ufunction z = fconv(x,y)# f5 P# {* F& R" M: g6 V" ^% \# J
% convolution by fft N = length([x( ;y( ])-1;- [0 h0 q0 ?$ h4 v
P = 2^nextpow2(N);
_! _# j" p& g( { ^+ @ F0 F( Ez = ifft( fft(x,P) .* fft(y,P));
' ~, c7 f% Q$ m4 Nz = z(1:N);
- G; O6 D, ?1 r: U/ n/ e$ f Z& B- l. Z8 [! c9 R
|