EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
% K+ g, }1 d8 z0 X W案例分析 Inverse Transform of Vector Padded Inverse Transform of Matrix Conjugate Symmetric Vector 2 E1 C) T- [ S7 e! ?
4 e! n5 [, V) h5 f0 i# a5 n% q6 r6 Y
案例分析8 j' Z' N. q3 S5 E# D, p
Inverse Transform of Vector
; s2 p" Q# s% v" I4 ]7 V a
8 J: t3 d; T# \1 F8 U% T g1 n( ]; W- % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.
- %
- % Create a vector and compute its Fourier transform.
- X = [1 2 3 4 5];
- Y = fft(X)
- % Y = 1×5 complex
- %
- % 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i ⋯
- %
- % Compute the inverse transform of Y, which is the same as the original vector X.
- ifft(Y)
- % ans = 1×5
- %
- % 1 2 3 4 5/ {" t& X( _7 c8 \' A
# l" p9 v4 v8 f( F7 X- I. b- M2 B+ ]$ Q4 |/ ~0 k2 z: a) T
; b0 O6 m7 S( K6 a9 \
# w2 `, y; e$ f
结果如下:
5 Y. n* V4 _! J# @3 F& }) m( M' ^) F, h: f9 A
ifft_vector& U# j+ m2 F7 s- ~! o8 P# k% y5 ?
0 `( Z' O) v; [6 ~2 @8 c1 IY =
8 d$ @' o2 T; D) X( _0 C8 d3 Z3 E1 K1 a9 f( a0 P& N" T
1 至 4 列0 U, z6 E/ X" p* L7 [$ `7 X; l7 O* L
6 E2 e: @# }; f 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i
. ?( `0 Q, n# f8 U" }1 Q. q* v8 M4 ?+ j/ N' {# R4 g& D3 D a, T
5 列2 `$ u& x# g! \: v+ m
8 ]0 u2 l9 `: r0 F& g -2.5000 - 3.4410i( a' n# A4 W1 ?( Z& N$ `+ C3 o l
* ~; e* n6 o2 A8 m' j+ i* \/ g* Bans =3 q$ S5 w; `# L9 L; f7 o- A
# W% P+ g: ?1 c& D: Y
1 2 3 4 5/ g( p* g, n T* d. A
$ x7 I. R7 a: ?# S( e! @( n% Z
0 P2 I! p J3 V
Padded Inverse Transform of Matrix- P$ E/ W) J/ I
- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n,2)
- size(X)5 }$ c6 ?* t" g: F
9 s7 b% |7 j) f5 Q) y
) z4 ^/ ?6 ^6 s' s1 r: l' i: P m; O7 Q* {! u& ]
4 h0 K. s6 B1 \9 ^结果如下:3 h7 v D2 [% D, C
) {2 A6 Y4 V9 Z2 j
Y =
; v9 {0 g9 b$ U0 Q; V( c6 P1 v: O8 D# T
0.8147 0.9134 0.2785 0.9649 0.9572
2 b# I) L0 I) D# Z9 @8 f 0.9058 0.6324 0.5469 0.1576 0.4854
8 E7 P8 z* _6 ?- y2 g 0.1270 0.0975 0.9575 0.9706 0.80039 b& M& }* s P: U
" ~/ d- ^6 D+ ]$ v3 J y" y1 CX =
D0 c9 i, ?+ {! ^1 R. c* N
8 f U: Q2 l8 T) \4 m 1 至 4 列1 s/ ?( A# a7 E& { j. R
b: z- q; [; A) k- H8 H* r3 Z 0.4911 + 0.0000i -0.0224 + 0.2008i 0.1867 - 0.0064i -0.0133 + 0.1312i% o* O! {3 g/ T C
0.3410 + 0.0000i 0.0945 + 0.1382i 0.1055 + 0.0593i 0.0106 + 0.0015i) D7 u3 ^0 n7 M6 Y$ Q X
0.3691 + 0.0000i -0.1613 + 0.2141i -0.0038 - 0.1091i -0.0070 - 0.0253i. y* g z' L( `- ~/ {0 K3 F0 P+ w, E
2 A% o1 o6 ~9 r: W) v$ j
5 至 8 列
: x5 F3 b$ v4 f( z$ z3 g" S# H" y) Z" `5 z: p K
0.0215 + 0.0000i -0.0133 - 0.1312i 0.1867 + 0.0064i -0.0224 - 0.2008i
% t H& @! p N4 q( L8 M$ k, O 0.1435 + 0.0000i 0.0106 - 0.0015i 0.1055 - 0.0593i 0.0945 - 0.1382i2 |4 v2 Q/ |: u6 f) f3 @7 F
0.1021 + 0.0000i -0.0070 + 0.0253i -0.0038 + 0.1091i -0.1613 - 0.2141i
% Y+ X; h+ q0 O+ i3 b) L9 g% Z# P2 Q1 @' ~$ X" a
ans =0 E' x7 g* r1 o* c$ {
' P5 L- t& h$ S3 o0 K3 ^+ X; t 3 8: c& S3 L, ?6 l' ~
, `; j5 m# j Q- a& q- t上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:1 y2 d, D: I6 R+ h0 g
" h4 I! ^% G# w" a2 NX = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:$ O1 [3 l. T% X) i/ Q/ ]3 d
8 `; k9 w5 Y. P2 S0 _, F x
- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n)
- size(X)2 f; a3 X5 c2 Y0 C# D
L0 _# S& B$ [& Q- e B
1 I! D- p+ G8 r. ]4 ]3 _Y =
; {0 v/ M% P# H. Z. x% o8 ]1 [& B+ B. V+ g5 |* T# D7 h8 z
0.1419 0.7922 0.0357 0.6787 0.3922( z3 n; U% c, ~/ Y: ?
0.4218 0.9595 0.8491 0.7577 0.6555
# V% D$ Z5 U* J! f6 A$ ?; e+ U 0.9157 0.6557 0.9340 0.7431 0.1712" V3 Q. G; y" K
' D. T( g8 [3 \X =% e( A/ @- Y# P2 N6 S
3 W* |4 r% x. E
1 至 4 列
3 n( R! S: Y9 g
9 p4 A- S/ I" C! W/ @5 [ 0.1849 + 0.0000i 0.3009 + 0.0000i 0.2274 + 0.0000i 0.2725 + 0.0000i6 E: {; U8 c/ L) i! }& ]" x
0.0550 + 0.1517i 0.1838 + 0.1668i 0.0795 + 0.1918i 0.1518 + 0.1599i
9 d6 U9 Z- g4 k' M -0.0967 + 0.0527i 0.0171 + 0.1199i -0.1123 + 0.1061i -0.0080 + 0.0947i
% E r. `+ S n* ?& _4 y -0.0195 - 0.0772i 0.0142 + 0.0028i -0.0706 - 0.0417i 0.0179 - 0.0259i' k/ e V, r+ O, ^
0.0795 + 0.0000i 0.0611 + 0.0000i 0.0151 + 0.0000i 0.0830 + 0.0000i4 `% X8 F/ D% f. D" n0 ]
-0.0195 + 0.0772i 0.0142 - 0.0028i -0.0706 + 0.0417i 0.0179 + 0.0259i1 h! f, Y0 _6 s: Y: O& |/ B
-0.0967 - 0.0527i 0.0171 - 0.1199i -0.1123 - 0.1061i -0.0080 - 0.0947i
5 C1 {; i0 e+ n/ R 0.0550 - 0.1517i 0.1838 - 0.1668i 0.0795 - 0.1918i 0.1518 - 0.1599i$ _# X. t/ A( B# E3 B
! {* A% b% D% Y" `8 L, b# l 5 列
; v9 B; E- j. [! i* v( o8 j! P4 `: K1 [/ |9 ~! F
0.1524 + 0.0000i: J. D. i! } k, r
0.1070 + 0.0793i
, s9 s$ V0 u; j% X 0.0276 + 0.0819i
1 S1 \5 R& I% i) B6 I( t -0.0089 + 0.0365i
; R. @, y9 Q+ t -0.0115 + 0.0000i
; A v: i& P3 G! `. m -0.0089 - 0.0365i! u+ ?* O+ M' B" u8 ]' b' _2 k- l/ j
0.0276 - 0.0819i
6 L! y, E) \/ j 0.1070 - 0.0793i
$ G9 k- [6 n! E. J0 a% i2 c
# n# x( Z: k K( J% A" `2 Tans =
* H n N% l* t$ @" W* ~* h& b* Y) O
8 5
. Z; |3 Y3 [5 }
, h( v+ x( X+ |4 U( r9 D: w+ i" b3 K$ l) ^' ~" @/ {, D7 v) {
Conjugate Symmetric Vector" Q0 R0 R1 V7 [5 _6 L
1 ]+ [# `4 ?+ }1 D3 n# R) pFor nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option, 0 m5 E3 ~( n' z& M X* Q
which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
% U6 Z; Y6 P8 a
% q' h9 g, k/ z' ]! n. tCreate a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform. 7 H3 Q1 Y0 b/ V$ m- w6 o
Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.: b/ b+ }1 O* h$ M* b+ E# ?
9 A/ A2 d( z8 l0 o% @
对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。, t: s0 q8 F1 p" v/ S1 l4 d
6 e+ `- r) P' e X2 ^! S) p y创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。0 T0 f' V: j+ O6 j# q1 ]1 F3 S
2 k! @+ H5 v* ^/ a0 B! w3 {
- clc
- clear
- close all
- % For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- % which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
- %
- % Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
- % Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
- Y = [1 2:4+eps(4) 4:-1:2]
- % Y = 1×7
- %
- % 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000 ⋯
- X = ifft(Y)
- % X = 1×7 complex
- %
- % 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i ⋯
- Xsym = ifft(Y,'symmetric')
- % Xsym = 1×7
- %
- % 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213 ⋯
- L5 P" x3 |! k5 a" J; V 3 D1 |+ k( D7 G. }* N
' d- J& S( A* J9 K1 o: C$ m; u5 T) p4 w2 D P/ H) f
6 U" A1 m9 I1 l: A3 a7 G4 q$ q
结果如下:
3 ^/ I& N0 \ E* R/ ^
% C5 G: q' T4 B; o" x* dY =7 P! ~; A S: o6 S5 E7 [- H
. w8 C4 k% s7 `" D: X 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000
, x% Y+ l: z, l1 |4 ^6 J
- |+ ^1 X% [! ~7 s& t) q$ [7 |X =
7 M* ~, O) f6 G# e- _
( n- O6 ?/ T+ L, q4 N 1 至 4 列( N0 a, K1 y% T7 t
+ O, \1 m* y$ l5 ] 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i- |& h: T o5 S" R8 _* K9 ~
: E, W) t8 u R* u0 E' y
5 至 7 列 @+ P, `7 X- C! {# L( t$ s9 ^% ^
/ B( t$ B" a+ z$ u9 M -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i% E4 T: q& Z, o7 ]; K
7 H0 T. N+ a& ?. JXsym =
" A& n+ o n" A1 L/ K% l& s' o5 l4 C" `/ Q" Y1 ?. }
2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.72139 q! P7 z6 q( j' e) \
- W+ e+ t- x' g9 \2 b. Q$ u1 @ w0 C. s
* o3 ^# E, `9 |2 a9 ]8 b
2 E r# N% [2 }- y+ _1 J. }( o: n5 O
$ P/ s1 c. Z* N9 a$ w% U4 u/ u
; R7 W) i0 \2 q
e6 m( M7 e9 @( C3 E; S2 D$ N( I1 Q( u
|