| 
; Z. Y( g9 t1 D8 K2 s
x
EDA365欢迎您登录!您需要 登录 才可以下载或查看,没有帐号?注册  
 案例分析        Inverse Transform of Vector        Padded Inverse Transform of Matrix        Conjugate Symmetric Vector & L* N7 r) I( Y$ }3 C& E) Z$ J; Z1 V4 o, Y. N
 案例分析: o8 V2 W+ {5 t/ i# s7 b$ m
 Inverse Transform of Vector
 1 s% K( U( J9 [6 v. W8 q6 r; B' a% q7 O0 r2 M, W. `, y1 i
 
 % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.%% Create a vector and compute its Fourier transform.X = [1 2 3 4 5];Y = fft(X)% Y = 1×5 complex%%   15.0000 + 0.0000i  -2.5000 + 3.4410i  -2.5000 + 0.8123i  -2.5000 - 0.8123i  -2.5000 - 3.4410i ⋯%% Compute the inverse transform of Y, which is the same as the original vector X.ifft(Y)% ans = 1×5%%      1     2     3     4     5: P: {+ Q  T8 P  T6 H' s
 0 N! O  p1 }. N  j# M1 L1 u! ^7 F
 , q. t* o2 K* I1 L) Q0 |# h- d, E7 Q& H# H  Y* u9 y& n+ p
 5 q9 R' n0 W6 Y& F  X# [4 ^$ \  R8 ~
 结果如下:
 0 `) a" E$ e) U/ e$ |0 ]( M# u3 X; f( P/ `
 ifft_vector
 : k7 W7 B4 B0 r7 j& B$ w3 @0 v( e' e0 r" B: h" h
 Y =. J* N6 c- Y7 X* E
 , y6 ^) E3 J) U! L4 m, ]/ Y
 1 至 4 列% {" ]' f; X- J$ r! S
 
 1 v; l/ }# t7 \) T$ Z" v1 o6 P4 j  15.0000 + 0.0000i  -2.5000 + 3.4410i  -2.5000 + 0.8123i  -2.5000 - 0.8123i
 - o2 C/ {2 I# X* A, R
 . k" h7 }6 @  ]5 c1 I# C  S: a  5 列
 ' {! X9 E" A( {- a' s9 O/ D- Y( i6 v2 |, g/ u. v
 -2.5000 - 3.4410i
 & m4 D& ^9 t3 d: f) o' |4 C/ f! v4 X8 E! n% S
 ans =
 8 y0 S$ d8 V7 Q+ k
 5 _5 w! T/ p1 A     1     2     3     4     56 `  `" M7 v2 J1 F3 ~
 / A( V, y! |  b" x
 7 L$ h6 N4 b7 g* W* V. Y2 R
 Padded Inverse Transform of Matrix: \' J$ ]$ L9 O% Y, m) o' r
 
 ) b6 X8 c+ g; [0 e8 J; n! f% Yclcclearclose all% The ifft function allows you to control the size of the transform.%% Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.% Each row of the result has length 8.Y = rand(3,5)n = 8;X = ifft(Y,n,2)size(X)" y4 U6 Y- e+ e
 5 J% W+ [' ^. l4 t' V! E
 & C; S; g4 i( t7 x
 
 8 d6 S0 _) U# p" g* L: M% s5 ~结果如下:
 1 T% Q0 P8 t; }) H
 0 i8 Y6 F; k. w- D/ H3 |( _# O/ JY =
 + b- r, F, h9 Q8 k( P" y6 n- \" T$ S3 ]0 L. V- ^3 S% ?' N
 0.8147    0.9134    0.2785    0.9649    0.9572
 % w. f4 I# e# T  _/ L    0.9058    0.6324    0.5469    0.1576    0.48540 L* X/ v/ Q6 K' p
 0.1270    0.0975    0.9575    0.9706    0.8003
 9 ], U, }9 z/ K7 M$ `4 z% P7 O  f, W2 i" ?
 X =
 6 T5 v7 n: `: L. J$ a
 : ~; _5 |8 [: s  1 至 4 列
 k1 H  t2 G4 \6 v' e0 I: [9 z$ ^2 i
 ( l$ w( }/ I# w   0.4911 + 0.0000i  -0.0224 + 0.2008i   0.1867 - 0.0064i  -0.0133 + 0.1312i+ z/ b& Q: n/ j) @# z
 0.3410 + 0.0000i   0.0945 + 0.1382i   0.1055 + 0.0593i   0.0106 + 0.0015i+ K! Z- j; c3 ?' b( b
 0.3691 + 0.0000i  -0.1613 + 0.2141i  -0.0038 - 0.1091i  -0.0070 - 0.0253i0 d6 \3 k  S3 W3 o
 3 W3 m, X0 n! P# m- c+ m( a5 ]+ z
 5 至 8 列3 o( |$ _+ j3 N# G$ `3 [
 
 ) R- I, ?; v9 r4 z0 `   0.0215 + 0.0000i  -0.0133 - 0.1312i   0.1867 + 0.0064i  -0.0224 - 0.2008i4 K; Y* a* }* J0 u8 G1 z
 0.1435 + 0.0000i   0.0106 - 0.0015i   0.1055 - 0.0593i   0.0945 - 0.1382i
 2 Q7 O( D0 s- _( [; _$ u+ q# B! i   0.1021 + 0.0000i  -0.0070 + 0.0253i  -0.0038 + 0.1091i  -0.1613 - 0.2141i5 O# L4 e: e1 |
 
 x, f( m  h/ Y7 X" ~7 Hans =2 F4 G. N* B+ W7 O! l) i) P
 
 + c; F  b; Q0 A/ @8 b     3     8
 1 H% [. v( `4 d0 m: _$ O
 & p+ D% ^8 L* @上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:* z% q" H7 T& |
 
 ' k: G% ~: S/ z* t  |" iX = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:2 W4 `, b0 l4 {# k6 a: V
 
 8 n* m0 l* H. O$ v% c
 ) [- Z0 F3 N; V8 \& d( B+ j0 Kclcclearclose all% The ifft function allows you to control the size of the transform.%% Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.% Each row of the result has length 8.Y = rand(3,5)n = 8;X = ifft(Y,n)size(X)4 p; l# b  d# a3 u' @# m
 + r4 c$ z) }$ j7 n/ ^+ a0 T
 Y =
 8 k: I  j2 c9 B' K$ f" P6 ~- G5 w" k" K
 0.1419    0.7922    0.0357    0.6787    0.3922; G+ g7 Q3 M; j6 P3 B9 E" Q
 0.4218    0.9595    0.8491    0.7577    0.6555
 6 i6 @9 F8 p5 U7 K    0.9157    0.6557    0.9340    0.7431    0.1712
 u- t; A* R3 \% q' @* t' r! j7 r# R1 k. e( }1 Z, ?8 {( U0 R
 X =' G! Y$ z8 x% l7 n' D  q( H7 l
 
 : \; B. d) f' x" b  1 至 4 列3 G2 e5 \* H) g* R  C% \
 
 : m/ Q8 r% `4 d4 ~' c/ D   0.1849 + 0.0000i   0.3009 + 0.0000i   0.2274 + 0.0000i   0.2725 + 0.0000i
 - x7 b/ {, V% _5 V   0.0550 + 0.1517i   0.1838 + 0.1668i   0.0795 + 0.1918i   0.1518 + 0.1599i; V7 [/ ]" Q3 f5 d$ [
 -0.0967 + 0.0527i   0.0171 + 0.1199i  -0.1123 + 0.1061i  -0.0080 + 0.0947i
 6 ^+ v4 i4 N) ^' O2 ^( p0 V) C( t3 r  -0.0195 - 0.0772i   0.0142 + 0.0028i  -0.0706 - 0.0417i   0.0179 - 0.0259i
 ! W, W1 l+ v* M+ ^6 f) ?0 S# E) v" d   0.0795 + 0.0000i   0.0611 + 0.0000i   0.0151 + 0.0000i   0.0830 + 0.0000i
 + o# b" e. |1 K0 y, r  -0.0195 + 0.0772i   0.0142 - 0.0028i  -0.0706 + 0.0417i   0.0179 + 0.0259i6 [, Z' D3 c3 j1 }  N& N$ |
 -0.0967 - 0.0527i   0.0171 - 0.1199i  -0.1123 - 0.1061i  -0.0080 - 0.0947i
 ) E3 f: A! H! \: N- C/ K9 z/ n+ {( @   0.0550 - 0.1517i   0.1838 - 0.1668i   0.0795 - 0.1918i   0.1518 - 0.1599i( ?6 l' {$ h7 u, g$ ~8 C; r: a) E
 
 ! i5 _2 ]- R: ~7 u  5 列
 4 e; J& S- {# v5 a5 d# w) r
 & l7 W7 b1 s* Z8 j' O   0.1524 + 0.0000i
 " l) B: T  V3 X3 Z   0.1070 + 0.0793i8 G" z3 O6 {; Z( K6 \. S2 t- z
 0.0276 + 0.0819i
 ( p% K( m) d& s  -0.0089 + 0.0365i2 p" O+ m+ e0 @/ O6 Z0 E+ a
 -0.0115 + 0.0000i0 {: x  g4 w6 u
 -0.0089 - 0.0365i9 `" R& q* V. n; j/ v) F
 0.0276 - 0.0819i. `* j# s* t: ~
 0.1070 - 0.0793i
 % @5 U3 T6 g4 }9 m9 C+ @' e/ t" O, Y9 H' J7 [' Y; Q& p
 ans =; {( A1 d2 w/ K+ T- E7 ^3 H: ^* @
 0 M4 n1 N" o3 z% k) B5 T
 8     5* E: L" e9 \2 t. p3 r: }- W2 k
 : b4 Z4 }  g& E8 l3 P& c8 ]
 ' G: d5 I/ D/ W+ {# e
 Conjugate Symmetric Vector
 ( B' o% y% N# G; j
 ' }: B/ e0 b% f4 k  f& MFor nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
 ( n9 `6 T6 T5 D( n0 J5 a4 _which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
 . m! i" @! C& B3 Y( R  `# T2 U' `4 q6 @1 s
 Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
 - `& ], h! k' i8 [5 p  g+ c7 |Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
 5 o; N* S) Y" F  f; {) |8 ]9 M( v* M6 \% o& s- E
 对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。
 ) x( s: X( ]. |/ R2 m' @7 M- o2 q$ Q4 I
 创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。
 ' s9 R3 ]1 X# y  A( _& W  }: t& Q( g, v, Y  j) ~  {
 
 clcclearclose all% For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,% which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.%% Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.% Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.Y = [1 2:4+eps(4) 4:-1:2]% Y = 1×7%%     1.0000    2.0000    3.0000    4.0000    4.0000    3.0000    2.0000 ⋯X = ifft(Y)% X = 1×7 complex%%    2.7143 + 0.0000i  -0.7213 + 0.0000i  -0.0440 - 0.0000i  -0.0919 + 0.0000i  -0.0919 - 0.0000i  -0.0440 + 0.0000i  -0.7213 - 0.0000i ⋯Xsym = ifft(Y,'symmetric')% Xsym = 1×7%%     2.7143   -0.7213   -0.0440   -0.0919   -0.0919   -0.0440   -0.7213 ⋯4 A/ s- Z2 t! s! S
 3 i& _2 x" C# G( I0 @
 $ ^: J& Q- l* o% K
 6 F$ G7 ?2 |8 u% K7 U; |. w' b* f$ M6 c, m
 结果如下:% f8 Y' {8 _0 s( a! V
 & s: {% z. u( ^) e9 M6 ^& ]3 s
 Y =
 + f" F( _/ U5 {  W& q# ~4 J& j, N
 - r& W$ b/ W, N3 b9 q$ a% P    1.0000    2.0000    3.0000    4.0000    4.0000    3.0000    2.0000
 - q! W0 C9 q% t6 L/ }5 @, |
 ; S& p  H2 U2 ~+ Q- m0 {X =$ z5 V8 C0 k+ j  G
 2 x, q4 D" A5 ?1 C, l8 u6 X+ w& W
 1 至 4 列: |3 Q0 u. y1 w
 
 $ v/ {5 Q" i" ~% j9 n, S4 J: f   2.7143 + 0.0000i  -0.7213 + 0.0000i  -0.0440 - 0.0000i  -0.0919 + 0.0000i0 l1 w1 E% W) R" S6 w7 o6 p0 J
 5 K9 G) |7 G+ ^5 E% Q# p8 N# {
 5 至 7 列6 T- ?/ D7 ^7 Q' M$ ^# L! ]$ q) Z
 
 " _5 c6 G5 z6 G) c  -0.0919 - 0.0000i  -0.0440 + 0.0000i  -0.7213 - 0.0000i
 - Q" r4 y1 O$ j0 ]
 % ~! A$ F& }  }& s: xXsym =
 ! }- l- N: S% `% c/ \( [4 a/ l) S+ D
 2.7143   -0.7213   -0.0440   -0.0919   -0.0919   -0.0440   -0.7213) a, C" b4 b! o/ M7 o
 
 * z, W+ c% |; j8 d  Q# t$ o( e  N) F! T7 b
 8 \5 [6 `9 y- J& b7 }) k8 T! c" _
 2 h; R6 o7 I: |. C6 ^. p/ Z
 
 2 S' }$ [  P+ A9 g  p! u0 R& h: I7 K( e& I, }
 
 1 \- ]2 P1 r2 \. e4 v
 ) B! w& g9 ^2 H# M" ]* ]' g3 }3 a4 r
 
 |