|  | 
 
| 
- y3 |& b; Q. E* k1 o6 N
x
EDA365欢迎您登录!您需要 登录 才可以下载或查看,没有帐号?注册  norm
 3 {: v' s% A0 d) L9 rVector and matrix norms; _& J1 T8 C* |7 a
 
 7 O& ^. R% _/ [Syntax/ \8 ~/ g3 |3 a; C; T: y9 f4 J( p
 
 4 B/ X% r+ _( [) k9 t8 G( y) xn = norm(v)
 ( z5 F9 `7 H8 U/ p; I8 G
 # p" o+ m/ _0 ~3 \) Wn = norm(v,p)
 % E3 ]7 r7 `3 l5 F# |- h9 }0 L
 0 s) P8 u& }' U! Z* X7 `! }4 Vn = norm(X), M, @. S' E; a( W' a( _3 J1 B
 3 g- O  b+ D8 k7 t8 k* U
 n = norm(X,p)
 e) m' G7 K# ?7 j" T! }% |
 2 Z9 h$ d  v/ [1 F: J; {n = norm(X,'fro')
 ! h$ O/ x, c! X' \/ ]$ O4 @
 " Q+ w: \) e+ `2 }- RDescription
 * o* I* b; \; i. E) s8 l9 h# n' E1 _/ a5 `+ n- m/ ]# s6 E! x3 c
 n = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。  y9 Q9 f/ `  z
 
 & Z% ~6 i# D6 g9 o! a5 _n = norm(v,p)返回广义向量p范数。9 R$ O/ o+ i7 ^/ q
 
 " K) D) ^2 Q8 v4 g8 A" j/ N( Vn = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。8 a5 }! A, l$ K; J$ k2 ]' a
 
 6 q/ }7 L' b% i- g- w, k1 n( Yn = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:
 / B+ `* X/ Y6 H  q9 s& A
 7 j, z" P' p* j& e% _
 # L* E2 Z- s5 k; f, E& B$ F如果p = 1,则n是矩阵的最大绝对列和。如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。如果p = Inf,那么n是矩阵的最大绝对行和。$ F2 ]3 ?: q$ h1 D. n
 n = norm(X,'fro')返回矩阵X的Frobenius范数。2 Y6 w' a0 J2 r) G1 P
 
 7 \: n: k7 i/ [0 X) W8 g有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识  [$ u" P5 ^6 q% q
 8 n4 t4 v6 b  d# ^
 下面举例说明:; y: S5 B* l5 D  n, [7 f$ e6 C0 q
 
 ' c0 Z" u- }. U  {Vector Magnitude(向量幅度)
 2 W3 i, @6 g- u3 X6 A8 D7 p& T  z0 V$ ^7 O( G" O8 u
 
 # X4 h+ q* u9 n; v%Create a vector and calculate the magnitude.v = [1 -2 3];n = norm(v)% n = 3.7417% F& V- V) r0 T2 X
 
 ' ?3 c" U4 Q) f2 M$ T1-Norm of Vector
 * A0 T! v! _! v, @! g" X% m1 Y. C; E# c+ N( M5 _
 
 5 X* a# a( h8 z9 S& }7 rclcclearclose all% Calculate the 1-norm of a vector, which is the sum of the element magnitudes.X = [-2 3 -1];n = norm(X,1)% n = 6; k) A8 N5 @5 |& M2 @) B  Q
 Euclidean Distance Between Two Points
 7 ~. Q2 f" e4 y+ H* c
 7 h* ?6 {* E# l7 {% E& H* N' a& E4 h
 clcclearclose all% Calculate the distance between two points as the norm of the difference between the vector elements.%% Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.a = [0 3];b = [-2 1];% Use norm to calculate the distance between the points.d = norm(b-a)$ E3 B* d5 G7 ]# q5 f' _
 Q: j6 h4 Q  \8 o6 [* hd =
 ?/ ?0 A% z3 `& r7 g4 b7 |% Y4 A4 L: a. M5 s8 W+ o7 H1 k% M6 V
 2.8284
 ; v+ s$ g) F$ Q' |3 w7 E& s: [8 y) a! |  O8 x* X( w# s
 几何上,两点之间的距离:1 C+ [  |  p0 ^9 W9 Y' h( V; @
 ! }) V+ [% p, ?* }9 C
 
  ! n2 f' z- _$ x! j$ X2 w2 H9 s . E6 B* y) j& G- o3 e. F- N
 $ P9 e4 x* i4 a/ n7 A8 a
 2-Norm of Matrix
 # }5 f, v% W: o2 H7 w! T# e+ U' _: f6 K: ?5 y
 
 clcclearclose all% Calculate the 2-norm of a matrix, which is the largest singular value.X = [2 0 1;-1 1 0;-3 3 0];n = norm(X)% n = 4.7234& b  X) x5 d4 ?( C- C3 B
 1 \3 K( i7 v" Q3 q4 a: iFrobenius Norm of Sparse Matrix
 9 a8 u) ~5 e/ R+ p, U/ Q
 & d* v& s0 E& E# H+ u
 ; g- q5 v' e5 B
 & g" a0 e- T( @0 Iclcclearclose all% 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。S = sparse(1:25,1:25,1);n = norm(S,'fro')% n = 56 v% k$ s! D- G
 
 1 P* q) C7 k. i" Y% M* P' N
 2 u' p4 e' w+ }' O0 L* ~
 | 
 |