|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
+ A6 {# n: [) a' Z2 D" P
norm1 y* S) [$ g! P; y5 B# y
Vector and matrix norms2 O' Z' Q5 y4 Q% k }9 W
; n) |! X; a6 V. Y2 R% A+ z; O
Syntax# R* [& J' M! b
( P, H# {# U4 i" r' v. j
n = norm(v)
0 }, H5 @* X! ^1 t1 W+ a- E
6 M' A7 `+ U4 G2 f' M+ d+ d8 En = norm(v,p)* f- G8 ?& f4 }+ ]5 `
2 s9 c6 H! e3 X% |* f$ W, C
n = norm(X)7 [5 y/ J9 X' \" }4 h6 d Y
: A8 `! \$ z7 Mn = norm(X,p)
9 e3 F0 [# p& s6 E; [& P( o( q
, Z7 y P b5 r$ |! h! J4 un = norm(X,'fro')
! D; C2 Y3 ^/ `
6 |+ R# T: f: w8 LDescription
) e: l% T; x+ e+ L+ n$ R
" ~2 k( h4 K* E) `n = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。) ~1 ?& o* \7 z% ^
$ ]1 R! Q, u! q1 O% U# k
n = norm(v,p)返回广义向量p范数。# G- Z2 f( u/ z1 M* D8 k& K
* n) C. U3 ?* ^6 d9 H! Bn = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。
( l5 c0 g2 E( |' T1 m, K8 N
+ e( @5 S, `5 nn = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:0 n* M9 }' _+ t V& I# G: A7 D
4 S+ }% ~+ n7 p6 Z6 t7 e
- 如果p = 1,则n是矩阵的最大绝对列和。
- 如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。
- 如果p = Inf,那么n是矩阵的最大绝对行和。) a+ m' L1 T" @* u
, T0 W0 q5 ~( b1 u$ V
n = norm(X,'fro')返回矩阵X的Frobenius范数。) z( J3 L9 x. W4 p8 | r- e
- c( l; V x/ b: s$ o& p有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识; K9 |( D( C6 G& i
, t4 |$ E$ J1 t: c6 m6 v下面举例说明:
! E8 l# m C2 T8 r' Q; R) T5 t7 u# m7 r% u1 K' Y$ _
Vector Magnitude(向量幅度)
; C6 F! n. l; v9 b8 h1 O0 j) F$ ^; }% m4 c6 [
- %Create a vector and calculate the magnitude.
- v = [1 -2 3];
- n = norm(v)
- % n = 3.7417
- F0 o: [! {$ ^. ^; M : p7 c7 K: |* |
?+ k7 n: K6 C% K7 o8 n- I, v
1-Norm of Vector
! T/ b$ N. g1 V! ^1 S" D6 E, {- ?5 e' k* D
- clc
- clear
- close all
- % Calculate the 1-norm of a vector, which is the sum of the element magnitudes.
- X = [-2 3 -1];
- n = norm(X,1)
- % n = 6
$ \7 `5 V+ e( P , N" z: g* v8 B; p
Euclidean Distance Between Two Points/ B4 @' ?0 C. D% Y; q
: A2 ^2 h3 _! d" C6 T- F2 Q/ x
- clc
- clear
- close all
- % Calculate the distance between two points as the norm of the difference between the vector elements.
- %
- % Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.
- a = [0 3];
- b = [-2 1];
- % Use norm to calculate the distance between the points.
- d = norm(b-a)6 D5 m1 {6 | k4 Z3 H) M3 k
# o0 b" u. @, C* o; Md =
2 a0 p( y1 o) R# u9 ^" Y' f; g |/ r
2.8284. A1 j' e2 s/ B# t' C
* P" K5 a4 e- F' d0 k
几何上,两点之间的距离:
) W; a1 T7 @2 z0 o' i, u L7 q' O1 u K& R3 {: b
( Y6 H# B% ]/ n# A" c* p$ l! b: D% L, Z! L( }9 V
2 u9 c3 `0 v$ x, \& X% V
2-Norm of Matrix
9 V' K5 T8 C/ m5 w+ t
9 ]8 {+ U) C1 C7 I! j( E8 c- clc
- clear
- close all
- % Calculate the 2-norm of a matrix, which is the largest singular value.
- X = [2 0 1;-1 1 0;-3 3 0];
- n = norm(X)
- % n = 4.7234
( N% U* Z& @9 _( ^7 e* _. Y3 j/ N4 q
' d, q6 `6 l. n( AFrobenius Norm of Sparse Matrix' A2 Y7 L5 t5 e
; m: M, R) L3 _# O7 K# M9 P( d% c' N- ]: F- ]8 R
- clc
- clear
- close all
- % 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。
- S = sparse(1:25,1:25,1);
- n = norm(S,'fro')
- % n = 51 p P `, ^3 \. a9 h B
7 }( [$ C% S9 _$ g( P `) P, z7 e7 M2 T! g" z/ p. F" o7 G) S
. G: r& @4 `. Q: w |
|